Overview of the Financing Programme for JCM Model Projects

3th October 2019 (Ulaanbaatar in Mongolia)

Satoru TANGO

Global Environment Centre Foundation (GEC)

- 1. Basic concept of the JCM and Financing Programme
- 2. Guideline for Project Proposal

Appendix:

- 8 Projects in Mongolia (2013 ~ 2019)
- 11 Projects in 2019 (First selection results)

Basic concept of the JCM Model Projects

Facilitating diffusion of advanced low-carbon or decarbonizing technologies, products, system, services and infrastructure as well as implementation of mitigation actions, and contributing to sustainable development of developing country.

Appropriately evaluating contributions from Japan to GHG emission reductions or removals in a quantitative manner and use them to achieve Japan's emission reduction target.

Contributing to the ultimate objective of the UNFCCC by facilitating global actions for GHG emission reductions or removals.

*measurement, reporting and verification

MOEJ

Incentivizes selecting low-carbon technologies by the financial support to initial cost

Provides funds to cover up to half of project's investment cost.

Collaboration with "City-to-City Collaboration Programme for Low-Carbon Society"

Collaboration with various international financing schemes under JICA, JBIC, ADB, World Bank, etc.

International Consortium

Japanese entity A

representative participant

Project management & report **MRV** result

JCM partnercountry entity B

partner participant

Installation and maintenance of equipment & conduct MRV

Project in the partner country Emissions reduction **Financial** support Initia GHG **GHG** Initial emissions cost emissions cost **Conventional** Low-carbon equipment & facility equipment & facility

Japanese government & entities

Japan will acquire a part of JCM credits (in return to the financial support)

Expected to deliver at least half of JCM credits issued

The consortium conducts MRV to estimate GHG emission reductions

Partner country government & entities

JCM Financing Programme (FY2013-2019), as of Sep 3, 2019 Centre Foundation

Mongolia: 9 projects Thailand: 31 projects ○Heat Only Boiler (HOB)** ○2.1MW Solar PV in Farm* ○10MW Solar PV* OEnergy Saving at Convenience Store O1MW Solar PV on Factory Rooftop* O8.3MW Solar PV in Farm O15MW Solar PV O20MW Solar PV OUpgrading Air-saving Loom* OCentrifugal Chiller & Compressor* O21MW Solar PV ■Upscaling Renewable Energy Sector OCentrifugal Chiller in Tire Factory OCo-generation in Motorcycle Factory OFuel Conversion by Introduction of LPG Boilers OAir Conditioning System & Chiller* ORefrigeration System OIon Exchange Membrane Electrolyzer Chilled Water Supply System Viet Nam: 22 projects OLED Lighting to Sales Stores 012MW Waste Heat Recovery in Cement Plant* ODigital Tachographs* OAmorphous transformers1* OCo-generation System ORefrigerator and Evaporator OAir-conditioning in Hotel* OAir-conditioning in Lens Factory* O2MW Solar PV O3.4MW Solar PV* OContainer Formation Facility* O320kW Solar PV in Shopping Mall* OHeat Recovery Heat Pump O5MW Floating Solar PV OAmorphous transformers 2* OAir-conditioning Control System O30MW Solar PV OBoiler System in Rubber Belt Plant OElectricity Kiln OHigh Efficiency Water Pumps1* OAir-conditioning Control System OBiomass Co-generation System OEnergy saving Equipment in Lens Factory* OAmorphous transformers 3*
OEnergy Saving Equipment in Wire Production Factory* OAmorphous transformers 4 OEnergy Saving Equipment in Port OCo-generation in Fiber Factory O25MW Solar PV in Industrial Park O3.4MW Solar PV OBiomass Boiler C0.8MW Solar PV and Centrifugal Chiller OEnergy Saving Equipment in Brewery Factory OHigh Efficiency Chiller ▲ Introduction of Scheme for F-gas Recovery and Destruction OModal Shift with Reefer Container OInverters for Raw Water Intake Pumps O37MW Solar PV and Melting Furnace OHeat Exchanger in Fiber Factory ▲ Collection Scheme and Dedicated System of F-gas OWaste to Energy Plant OHigh Efficiency Water Pumps2 OBiomass Boiler to Chemical Factory Bangladesh:6 projects OCentrifugal Chiller OLoom at Weaving Factory* Mexico: 7 projects O315kW PV-diesel Hybrid System* O50MW Solar PV Power Plant O2.4MW Power Generation with Methane Gas Recovery System ■High Efficiency Transmission Line OCentrifugal Chiller* Laos:4 projects Once-through Boiler and Fuel Switching REDD+ through controlling slush-and-burn O64MW Wind Farm O20MW Solar PV Saudi Arabia:1 project Kenya:2 projects OAmorphous transformers O30MW Solar PV1 OEnergy Efficient Distillation System O1MW Solar PV at Salt Factory OElectorolyzer in Chlorine O14MW Floating Solar PV O11MW Solar PV O30MW Solar PV2 C38MW Solar PV Production Plant* Phillipines:11 projects Myanmar: 7 projects O15MW Hydro Power Plant O4MW Hydro Power Plant O1.53MW Rooftop Solar PV O700kW Waste to Energy Plant
OBrewing Systems to Brewery Factory O2.5MW Rice Husk Power Generation O1.2MW Rooftop Solar PV O1MW Rooftop Solar PV O4MW Solar PV O19MW Hydro Power Plant O0.16MW Micro Hydro Power Plant OOnce-through Boiler in Instant Noodle Factory O18MW Solar PV OBiogas Power Generation and Fuel Conversion ○1.8MW Rice Husk Power Generation ORefrigeration System in Logistics Center Costa Rica:2 projects O8.8MW Waste Heat Recovery in Cement Plant Palau:5 projects O5MW Solar PV OBrewing Systems and Biogas Boiler to Brewery Factory OChiller and Heat Recovery System O370kW Solar PV for Commercial Facilities* ○155kW Solar PV for School* Cambodia: 5 projects O445kW Solar PV for Commercial Facilities II* Chile:2 projects O200kW Solar PV at International School* OLED Street Lighting O0.4MW Solar PV for Supermarket ○1MW Rooftop Solar PV OSolar PV & Centrifugal Chiller OInverters for Distribution Pumps O1MW Solar PV for Supermarket O2MW Solar PV and 4MWh Storage Battery ■ Battambang Wastewater Treatment Project Indonesia:31 projects Maldives: 2 projects OCentrifugal Chiller at Textile Factory* OEnergy Saving at Convenience Store* ○186kW Solar Power on School Rooftop* ■Smart Micro-Grid System ORefrigerants to Cold Chain Industry** ODouble Bundle-type Heat Pump* Model Project in FY 2013 (7 projects in 3 countries) OCentrifugal Chiller at Textile Factory 2* O30MW Waste Heat Recovery in Cement Industry* O Model Project in FY 2014 (12 projects in 5 countries) O507kW Solar Power Hybrid System ORegenerative Burners Oold Corrugated Cartons Process* OCentrifugal Chiller at Textile Factory 3* ADB Project in FY 2014 (1 project in 1 country) OUpgrading to Air-saving Loom* OCentrifugal Chiller in Shopping Mall* Model Project in FY 2015 (31 projects in 9 countries) OSmart LED Street Lighting System Once-through Boiler System in Film Factory Model Project in FY 2016 (35 projects in 9 countries) REDD+ Model Project (2 projects in 2 countries) OGas Co-generation System* Once-through Boiler in Golf Ball Factory O1.6MW Solar PV in Jakabaring Sport City* REDD+ through controlling slush-and burn O Model Project in FY 2017 (19 projects in 7 countries) OLooms in Weaving Mill D10MW Hvdro Power Plant OLED Lighting to Sales Stores ADB Project in FY 2017 (1 project in 1 country) OIndustrial Wastewater Treatment System ○0.5MW Solar PV* Model Project in FY2018 (24 projects in 11 countries) OGas Co-generation system OAbsorption Chiller O10MW Hydro Power Plant ADB Project in FY 2018 (2 projects in 2 country) OHigh Efficiency Autoclave OCNG-Diesel Hybrid Public Bus ORehabilitation of Hydro Power Plant ▲ F-gas Project in FY 2018 (2 projects in 2 country) O12MW Biomass Power Plant OInjection Molding Machine O Model Project in FY 2019 (11 projects in 5 countries) Other 1 project in Malaysia Total 147 projects in 16 partner countries

Underlined projects have started operation (93 projects) Projects with * have been registered as JCM projects (44 projects)

- Reduce energy-related CO2 emissions with leading low carbon technologies in partner countries
- Contribute to the sustainable development in partner countries.
- Reduction of GHG emissions achieved by the projects can be quantitatively calculated and verified.
- Facilities installed by the projects do not receive any other subsidy by the Government of Japan.

Guideline

for Submitting
JCM model project proposal in FY2019

Consortium must include both an owner and user of facility installed by the model project.

- (a) A representative participant of the model project shall be a Japanese entity of an international consortium.
- (b) A participant shall have capability for the implementation, such as technical capacity to appropriately implement the eligible project.
- (c) A participant shall have a financial basis to bear the costs necessary to appropriately implement the eligible project.
- (d) A participant shall have adequate management structures and handling capacity for accounting and other administrative work related to the eligible project;
- (e) A participant shall explain the contents, effect on GHG emission reductions, details of the cost, investment plan, etc. of the eligible project.

Guideline

for Submitting
JCM model project proposal in FY2019

What kind of cost is covered & not covered by this programme?

✓ COVERED

- (a) Main construction work
- (b) Ancillary work
- (c) Machinery and appliances
- (d) Surveying and testing
- (e) Facilities/equipment (including monitoring equipment)
- (f) Administrative work; and
- (g) Other necessary costs approved by GEC

What is the criteria of cost-effectiveness?

JPY4,000/tCO2equivalent

Amount of financial support[JPY]

Emission reductions of GHG [tCO2equivalent/y] × legal durable years[y]

Legal durable years of the facilities is stipulated by the Japanese law, and are dependent on the industry classification.

JPY3,000/tCO2equivalent

In case the number of PV JCM Model Projects by each country is 5 or more. (Mongolia and Thailand)

Guideline

for Submitting
JCM model project proposal in FY2019

Overview of JCM Model Projects in FY2019

Budget JPY9.9 billion (Approx. USD90million) **Financial support** per project **Executing** From ¥50million International Consortium that consists of a Japanese entity **Entity** and a JCM partner-country entity (ies) to ¥2billion (approx.) Scope of Facilities, equipment, vehicles, etc. which reduce CO2 from fossil fuel combustion as well as construction cost for installing those facilities, etc. **Financing Eligible** Start installation after the Contract of Finance is concluded and finish installation within 3 years. **Projects** Maximum of 50% and reduce the percentage Maximum according to the number of already selected project(s) using a similar technology in each partner country. percentage of **X** Number of already selected project(s) using a similar technology in each partner country: **Financial Support** none (0) = up to 50%, up to 3 (1-3) = up to 40%, more than 3 (>3) = up to 30%. The percentage of financial support will be determined by GEC. Cost-effectiveness of GHG emission reductions is expected to be JPY4,000/tCO2eq or better. **Cost-effectiveness If the number of PV projects in a partner country is 5 or more, cost-effectiveness is expected to be JPY3,000/tCO2eg or better.**

Guideline

for Submitting
JCM model project proposal in FY2019

JCM Model Projects Schedule in FY2019

Guideline

for Submitting JCM model project proposal in FY2019

Categorization by Technology Type for JCM Model Projects Global Environment Centre Foundation

Infrastructure through JCM

- 1 Thailand / FAST RETAILING CO., LTD. High Efficiency LED Lighting
- Cambodia / AEON MALL Co., Ltd.
 Solar Power System and High Efficiency Centrifugal Chiller
- Bangladesh / Ebara Refrigeration Equipment & Systems Co., Ltd. High Efficiency Centrifugal Chiller
- Mexico / Suntory Spirits Limited
 Once-through Boiler and Fuel Switching

- Palau / Pacific Consultants Co., Ltd. Solar Power Plants for Commercial Facilities
- Indonesia / Toyota Tsusho Corporation Double-Bundle type Heat Pump
- Indonesia / Hokusan Co., Ltd. CNG-Diesel Equipment to Public Bus
- Thailand / Yokohama Port Corporation Energy Efficient Equipment to Bangkok Port

- Indonesia / Environmental Management and Technology Center
- Energy Saving in Industrial Wastewater Treatment System

 Myanmar / Kirin Holdings Company, Limited.
 Energy Saving Brewing Systems
- 1 Thailand / TSB Co., Ltd. Floating Solar Power System
- Mexico / NTT DATA INSTITUTE OF MANAGEMENT CONSULTING, Inc.
 Power Generation with Methane Gas Recovery System

05

COMMERCE

PVs for shopping malls, office use / Energy-efficient air conditioners, etc. **TRANSPORT**

Eco driving / Modal shift / Low-carbon ports

INDUSTRY MANUFACTURING

POWER GE NERATION & SU PPLY

Large-scale solar power / Wast heat recovery power generation / Small hydropower generation, etc.

URBAN **INFRASTRUCTURE**

Waste-to-energy / Energy-saving water and sewage / LED street lights, etc.

Accelerating International Promotion of Infrastructure through JCM

Along with the Overseas Development Strategy (Environment) compiled by Cabinet Office, Government of Japan in June 2018, the JCM model project aims to contribute to global GHG emission reductions, through the diffusion of leading low carbon or decarbonizing technologies.

POWER GENERATION AND SUPPLY

Viet Nam / Yuko Keiso Co., Ltd. Amorphous High Efficiency Transformers in power grid

URBAN INFRASTRUCTURE

- 2 Viet Nam / Yokohama Water Co., Ltd.
- 3 Myanmar / JFE Engineering Corporation Waste to Energy Plant in Yangon City
- 3 Myanmar / Fujita Corporation Rice Husk Power Generation

06

Баярлалаа!

Global Environment Centre Foundation(GEC) Tokyo Office

3rd Floor, Hongo Ozeki Bidg 3-19-4, Hongo, Bunkyo-ku,

Tokyo 113-0033, JAPAN

Phone: +81-3-6801-8773 / FAX: +81-3-6801-8861

E-mail:jcm-info@gec.jp

URL : http://gec.jp/

Year	Partner Country	Entity	Project Title	Sector	Expected GHG Emission Reductions (tCO2/y)
2019	Mongolia	Saisan Co.,Ltd.	Fuel Conversion by Introduction of LPG Boilers to Beverage Factory	Energy Efficiency	5,781
2018	Mongolia	Sharp Energy Solutions Corporation	21MW Solar Power Project in Bayanchandmani	Renewable Energy	27,008
2017	Mongolia	Sharp Energy Solutions Corporation	Introduction of 20MW Solar Power System in Darkhan City	Renewable Energy	22,927
2017	Mongolia	Sharp Energy Solutions Corporation	Introduction of 15MW Solar Power System near New Airport	Renewable Energy	18,438
2016	Mongolia	Farmdo Co., Ltd.	Installation of 8.3MW Solar Power Plant in Ulaanbaatar suburb Farm	Renewable Energy	9,585
2015	Mongolia	Farmdo Co., Ltd.	Installation of 2.1MW Solar Power Plant for Power Supply in Ulaanbaatar Suburb	Renewable Energy	2,424
2015	Mongolia	Sharp Energy Solutions Corporation	10MW Solar Power Project in Darkhan City	Renewable Energy	11,221
2013	Mongolia	Suuri-Keikaku Co., Ltd.	Upgrading and Installation of Centralized Control System of High- efficiency Heat Only Boiler (HOB)	Energy Efficiency	206

Fuel Conversion by Introduction of LPG Boilers to Beverage Factory

PP (Japan): Saisan Co., Ltd., PP (Mongolia): MCS International LLC, MCS Coca Cola LLC

Outline of GHG Mitigation Activity

LPG boilers are introduced for the purpose of mitigation of GHG emissions as well as air pollution in Ulaanbaatar City.

By introducing the most efficient and newest model of LPG once-through boilers and vacuum type water heaters, the efficiency of the system is improved with less fuel consumption.

Expected GHG Emission Reductions

5,781 tCO₂/year

- =Reference CO₂ emissions (Ry)[tCO₂/y]
 - -Project CO₂ emissions (Py) [tCO₂/y]
- $=12,692 [tCO_2/y] 6,911 [tCO_2/y]$

Ry=Reference fuel consumption (RQfy) [t/y]

- \times Fuel emission factor (furf) [tCO₂/t] + Reference electricity consumption (RQey) [MWh/y] \times Grid emission factor (gef) [tCO₂/MWh]
- Py=Project fuel consumption (PQfy) [t/y] × Fuel emission factor (fupf) [tCO₂/t] +Project electricity consumption (PQey) [MWh/] × (gef) [tCO₂/MWh]

Sites of Project

21MW Solar Power Project in Bayanchandmani

PP (Japan): Sharp Energy Solutions Corporation, PP (Mongolia): Solar Energy Chandmani LLC

Outline of GHG Mitigation Activity

Sharp Energy Solutions Corporation and Solar Energy Chandmani LLC introduce a 21MWac ground-mount solar PV system in Bayanchandmani village, Mongolia for the sale of power.

This project contributes Mongolian energy policy to increase renewables up to 30% by 2030.

Expected GHG Emission Reductions

27,008 tCO₂/year

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ Emission) [tCO₂/year]
- = ((Reference Power consumption) [MWh/year]
 - 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

Sites of Project

Introduction of 20MW Solar Power System in Darkhan City

PP (Japan): Sharp Corporation, PP (Mongolia): Darkhan Selenge Electricity Distribution Network JSC

Outline of GHG Mitigation Activity

Sharp and Darkhan Selenge Electricity Distribution Network JSC construct PV plant in Darkhan City in Mongolia.

This project contributes Mongolian energy policy to increase renewables up to 30% by 2030.

Expected GHG Emission Reductions

22,927 t-CO2 /year

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ Emission) [tCO₂/year]
- = ((Reference Power consumption) [MWh/year]
 - 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

Introduction of 15MW Solar Power System near New Airport

PP (Japan): Sharp Corporation , PP (Mongolia): Tenuun Gerel Construction LLC

Outline of GHG Mitigation Activity

Sharp and Tenuun Gerel Construction LLC construct PV plant in Khushig khundii near New airport in Mongolia.

This project contributes to Mongolian energy policy to increase renewables up to 30% by 2030.

Expected GHG Emission Reductions

18,438 t-CO2 /year

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ Emission) [tCO₂/year]
- = ((Reference Power consumption) [MWh/year]
 - 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

Introduction of 20MW Solar Power System in Darkhan City

PP (Japan): Sharp Corporation, PP (Mongolia): Darkhan Selenge Electricity Distribution Network JSC

Outline of GHG Mitigation Activity

Sharp and Darkhan Selenge Electricity Distribution Network JSC construct PV plant in Darkhan City in Mongolia.

This project contributes Mongolian energy policy to increase renewables up to 30% by 2030.

Expected GHG Emission Reductions

22,927 t-CO2 /year

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ Emission) [tCO₂/year]
- = ((Reference Power consumption) [MWh/year]
 - 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

Installation of 2.1MW Solar Power Plant for Power Supply in Ulaanbaatar Suburb

PP (Japan): Farmdo Co., Ltd. / PP (Mongolia): Everyday Farm LLC, Bridge LLC

Outline of GHG Mitigation Activity

The purpose of this project is to reduce CO₂ emission, mitigate air pollution and stabilize power supply in Mongolia by installing 2.1MW scale solar power plants in the suburbs of Ulaanbaatar. This power plants can replace some part of power generation by coal-fired thermal power. Moreover, lots of achievements in daily life, mitigating air pollution, resolving power shortage, food supplying, etc., can be expected by synergy of agricultural and solar power generation technology.

Expected GHG Emission Reductions

2,424 tCO₂/year

- = Project Electricity Generation(EG)
 - x Emission Factor (EF)
- =Power Generation Capacity[kW]
 - x Annual Operating Rate[%]
 - x 24hours x 365days x EF

Site of JCM Model Project

Project site situated in the farm Everyday Farm owns is located 37km northwest of Ulaanbaatar city center.

10MW Solar Power Project in Darkhan City

PP (Japan): Sharp Corporation / PP (Mongolia): Solar Power International LLC (SPI)

Outline of GHG Mitigation Activity

The project aims to reduce CO₂ emissions by constructing a 10MW Solar Power Generation Plant beside the 110kV substation in Darkhan City, which locates approximately 230 km North of the capital city Ulaanbaatar, and supplying the generated electricity through the power transmission network.

The power plant employs crystalline solar modules of maximum output of 310W per panel and module conversion efficiency of 15.9%. Approximately 32,000 numbers (72 series) of these modules and peripheral systems are installed on a land of 36 ha.

Expected GHG Emission Reductions

11,221tCO₂/year

CO₂ emission reduction

- = PV generation (a)
 - × Reference emission factor (b)
- = 14,079 MWh/year \times 0.797 tCO₂/MWh

Sites of JCM Model Project

Energy Saving for Air-conditioning and Process Cooling at Textile Factory

PP(Japan): Suuri-Keikaku / PP(Mongolia): Anu-Service

Outline of GHG Mitigation Activity

1. This JCM model project consists of two model sites: Bornuur sum in a rural area and the 118th School in Ulaanbaatar City.

The Bornuur sum project includes the installation of heat only boilers (HOBs) as well as pipe laying work, electrical construction and boiler building construction. This project alters the current heat supply system in Bornuur sum of individual building-based heating, under which low efficiency HOBs and stoves are used. The centralized control system of high-efficiency HOBs is installed in this project

2.The other project is the replacement of low-efficiency, old-type boilers with the latest high-efficiency model boilers at the 118th School in Ulaanbaatar City. This project also leads to the reduction of coal consumption to mitigate CO₂ emissions as well as air pollutants.

Expected GHG Emission Reductions

Sites of JCM Model Project

298 tCO2/year

Bornuur sum & Ulaanbaatar City, Mongolia

Results of first selection. Second selection is now under evaluating.

Year	Partner Country	Entity	Project Title	Sector	Expected GHG Emission Reductions (tCO2/y)
2019	Mongolia	Saisan Co.,Ltd.	Fuel Conversion by Introduction of LPG Boilers to Beverage Factory	Energy Efficiency	5,781
2019	Thailand	Toyota Motor Corporation	Introduction of 37 MW Solar Power System and High Efficiency Melting Furnace in Vehicle & Engine Factory	Energy Efficiency Renewable Energy	19,483
2019	Thailand	NIPPON STEEL ENGINEERING CO., LTD.	Efficiency Improvement of Co-generation System by Installation of Heat Exchanger in Fiber Factory	Energy Efficiency	359
2019	Philippines	ITOCHU Corporation	Biogas Power Generation and Fuel Conversion Project in Pineapple Canneries	Renewable Energy	52,156
2019	Philippines	Tokyo Century Corporation	18MW Solar Power Project in Collaboration with Power-supply Company	Renewable Energy	11,743
2019	Philippines	Voith Fuji Hydro K.K.	19 MW Mini Hydro Power Plant Project in Isabela Province	Renewable Energy	46,836
2019	Vietnam	DAIICHI JITSUGYO CO., LTD.	Introduction of Biomass Boiler to Chemical Factory	Renewable Energy	16,882
2019	Vietnam	Yokohama Water Co., Ltd.	Energy Saving by Introduction of High Efficiency Water Pumps in Hue City	Energy Efficiency	4,060
2019	Vietnam	Hitachi Zosen Corporation	Waste to Energy Project in Hanoi City	Waste Handling and Disposal	119,870
2019	Mexico	Sharp Energy Solutions Corporation	30MW Solar Power Project in La Paz city	Renewable Energy	36,724
2019	Palau	Sharp Energy Solutions Corporation	Introduction of 1MW Solar Power System on Supermarket Rooftop	Renewable Energy	842

Fuel Conversion by Introduction of LPG Boilers to Beverage Factory

PP (Japan): Saisan Co., Ltd., PP (Mongolia): MCS International LLC, MCS Coca Cola LLC

Outline of GHG Mitigation Activity

LPG boilers are introduced for the purpose of mitigation of GHG emissions as well as air pollution in Ulaanbaatar City.

By introducing the most efficient and newest model of LPG once-through boilers and vacuum type water heaters, the efficiency of the system is improved with less fuel consumption.

Expected GHG Emission Reductions

5,781 tCO₂/year

- =Reference CO₂ emissions (Ry)[tCO₂/y]
 - -Project CO₂ emissions (Py) [tCO₂/y]
- $=12,692 [tCO_2/y] 6,911 [tCO_2/y]$

Ry=Reference fuel consumption (RQfy) [t/y]

- \times Fuel emission factor (furf) [tCO₂/t] + Reference electricity consumption (RQey) [MWh/y] \times Grid emission factor (gef) [tCO₂/MWh]
- Py=Project fuel consumption (PQfy) [t/y] × Fuel emission factor (fupf) [tCO₂/t] +Project electricity consumption (PQey) [MWh/] × (gef) [tCO₂/MWh]

Sites of Project

Partner Country: Thailand

Introduction of 37 MW Solar Power System and High Efficiency Melting Furnace in Vehicle & Engine Factory

PP(Japan) Toyota Motor Corporation,

PP(Thailand) Toyota Motor Thailand Co., Ltd., Siam Toyota Manufacturing co., Ltd., Toyota Daihatsu Engineering & Manufacturing Co., Ltd.

Outline of GHG Mitigation Activity

This project aims the reduction of CO₂ emission by installing 37 MW solar power system on the rooftop of the vehicle factory of Toyota Motor Thailand Co., Ltd. (TMT) located in Samutprakarn & Chachoengsao and engine factory of Siam Toyota Manufacturing co., Ltd. (STM) located in Chonburi in eastern Bangkok. Electricity generated by solar power system is consumed in-house and replaces part of grid electricity consumption.

CO₂ emissions are also reduced by replacing the existing melting furnace in STM with a high efficient medium-frequency induction melting furnace.

Expected GHG Emission Reductions

19,483 tCO₂/year

Solar system: 16,858 tCO₂/year

- = ((Reference Power Consumption) [MWh/year]
- 0 [MWh/year]) × Emission Factor [tCO₂/MWh] High efficiency melting furnace: 2,625 tCO₂/year
- = (Reference CO₂ Emissions) [tCO₂/year]
 - (Project CO₂ Emissions) [tCO₂/year]

Sites of Project

Efficiency Improvement of Co-generation System by Installation of Heat Exchanger in Fiber Factory

PP (Japan): Nippon Steel Engineering Co., Ltd., PP (Thailand): NS-OG Energy Solutions (Thailand) Ltd.

Outline of GHG Mitigation Activity

This project aims to efficiently utilize unused thermal energy of the co-generation system to heat boiler feed water. A heat exchanger is additionally installed to the existing co-generation system which is composed of 7MW gas turbine and heat recovery steam generator equipped with duct burner.

Natural gas fuel used for duct burner is reduced by approx. 4%, by increasing the temperature of boiler feed water by approx. 20 degrees Celsius.

Expected GHG Emission Reductions

359tCO₂/year

GHG Emission Reductions = Reference CO₂ Emission - Project CO₂ Emission

Reference CO_2 Emission = [(BFW* temp. after heat recovery)-(BFW temp. before heat recovery)] × (BFW amount) x (Specific heat of water) / (Boiler efficiency) x (CO_2 emission coefficient of fuel)

Project CO₂ Emission = 0

*BFW: Boiler Feed Water

Project site

- Project site is located in Samutprakan province, adjacent to Bangkok.
- Project site is located 30 km south from Suvarnabhumi International Airport.

Partner Country: Philippines

Biogas Power Generation and Fuel Conversion Project in Pineapple Canneries

PP (Japan): ITOCHU Corporation

PP (Philippines): METPower Venture Partners Holdings, Inc.; Surallah Biogas Ventures Corporation

Outline of GHG Mitigation Activity

In this project, biogas derived from pineapple residue is utilized as fuel for gas engines and boilers to generate power and steam at the two pineapple canning factories (Surallah and Polomolok) of Dole Philippines, Inc.

This project aims to produce renewable energy by utilizing the pineapple waste which has been discarded. It contributes to reducing greenhouse gases emissions as well as lowering electricity cost for Dole Philippines, Inc.

Expected GHG Emission Reduction

52,156 tCO₂/year

Power Generation: 2,640 tCO₂/year (Surallah) 9,241 tCO₂/year (Polomolok)

- = ((Reference Power Consumption) [MWh/year]
 - 0 [MWh/year]) × Emission Factor [tCO₂/MWh]

Boilers: 14,571 tCO₂/year (Surallah) 25,704 tCO₂/year (Polomolok)

- = (Reference CO₂ Emissions) [tCO₂/year]
 - (Project CO₂ Emissions) [tCO₂/year]

Project Sites

18MW Solar Power Project in Collaboration with Power-supply Company

PP (Japan): Tokyo Century Corporation, PP (Philippines): MSpectrum, Inc.

Outline of GHG Mitigation Activity

This project introduces 18MW Solar System in collaboration with Power-supply company to its clients' rooftops of shopping malls and factories.

Reduction of GHG emission is made by replacing a portion of conventional fossil fuel electricity to renewable energy.

Expected GHG Emission Reductions

11,743 tCO₂/year

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ emissions) [tCO₂/year]
- = ((Reference power consumption)
 [MWh/year]
- 0 [MWh/year]) × Emission factor [tCO₂/MWh]

19 MW Mini Hydro Power Plant Project in Isabela Province

PP (Japan): Voith Fuji Hydro K.K., PP (Philippines): Isabela Power Corporation

Outline of GHG Mitigation Activity

This project introduces turbine, generator, control system and auxiliary equipment at IPC1(19MW) hydro power plant located in Pinacauan de Ilaguen river, Isabela Province, Philippine. Machines can keep high efficiency even in variable head and variable loading condition, by adopting Kaplan turbine provided by Voith Hydro with the abundant experiences and latest technologies.

This project is expected to have 95GWh generation capacity annually.

< Kaplan Turbine to be installed >

Expected GHG Emission Reductions

46,836 tCO₂/year

= (Reference CO₂ Emissions) [tCO₂/year] - (Project CO₂ Emissions) [tCO₂/year]

= ((Reference Power Consumption)
[MWh/year] - 0
[MWh/year]) × Emission Factor
[tCO2/MWh]

Sites of Project

IPC1 Power plant is located approx. 30km to the east from Tuguegarao Airport, the northern part of Luzon.

Introduction of Biomass Boiler to Chemical Factory

PP (Japan): Daiichi Jitsugyo Co., Ltd., PP (Vietnam): THUAN HAI CORPORATION

Outline of GHG Mitigation Activity

Daiichi Jitsugyo Co., Ltd. and THUAN HAI CORPORATION jointly introduce biomass (Rice husk) -fueled steam boilers to supply steam to a chemical factory located in Phu My 3 Specialized Industrial Park in Ba Ria Vung Tau Province.

The project contributes to the achievement of the country's Vision by 2030 and Green Growth Strategy through achieving decarbonization by introducing biomassfueled steam boilers instead of fossil fuelfired boilers.

Expected GHG Emission Reductions

16,882 tCO₂ /year

- = Reference CO₂ emission—Project CO₂ emission
- Reference CO₂ emission
- = Fuel consumption by reference boiler [ton/year] x Emission Factor [tCO₂/ton]
- Project CO₂ emission
 - = 0 [tCO₂/year]

Energy Saving by Introduction of High Efficiency Water Pumps in Hue City

PP (Japan): Yokohama Water Co., Ltd., PP (Vietnam): THUA THIEN HUE WATER SUPPLY JOINT STOCK COMPANY

Outline of GHG Mitigation Activity

High efficiency water pumps with inverter control are installed in a new water treatment plant and two existing water treatment plants owned by THUA THIEN HUE WATER SUPPLY JOINT STOCK COMPANY (HueWACO).

To perform with high efficiency, the pumps are customized to specific conditions and requirements of the recipient plants.

Moreover, highly efficient operation is possible by adjusting the rotational speed of the motor according to the change in flow rate using an inverter.

Tu Ha WTP Water distribution pump (Existing pump)

Expected GHG Emission Reductions

4,060 tCO₂/year

= [(Reference Power Consumptions) – (Project Power Consumptions)] x Emission Factor (EF)

Sites of Project

Partner Country: Vietnam

Waste to Energy Project in Hanoi City

PP (Japan):Hitachi Zosen Corporation

PP (Vietnam): (SPC)T&T - HITZ ENVIRONMENT & ENERGY COMPANY LIMITED / T&T Group Joint Stock Company

Outline of GHG Mitigation Activity

The objective of this project is to build and operate Waste to Energy plant for municipal solid waste from Hanoi City in the Xuan Son Waste treatment area in the northwestern part of Hanoi, Vietnam. Hitachi Zosen and T&T Group established SPC, which is responsible for the implementation of this project.

Under the contract with the Hanoi People's Committee, 1,000tons per day of municipal solid waste generated from Hanoi city is incinerated at this plant. The waste heat will be used for power generation. Generated power will be used for internal consumption and the rest of power will be supplied to the state-owned power company EVN.

As a result, it reduces fossil fuel consumption and CH4 emissions from landfill disposal.

Expected GHG Emission Reductions

119,870tCO₂eq/year

=(Reference GHG Emissions for 15 years - Project GHG Emissions for 15 years) / 15 years

 $=(3,393,355tCO_2eq - 1,595,288tCO_2eq)$ /15 years

Sites of Project

Xuan Son Waste treatment area, Ba Vi district, Hanoi (About 80km west from Noi Bai Airport)

Total area of the site is 4.06 ha.

30MW Solar Power Project in La Paz city

PP (Japan): Sharp Energy Solutions Corporation, PP (Mexico): Prana Power SAPI de CV, Saferay Solar SAPI de CV

Outline of GHG Mitigation Activity

A 30MW ground-mount solar PV system is installed in Baja California Sur, Mexico, to sell power through the grid. To maximize the power generation, solar trackers are used.

This project contributes to the achievement of Mexico's policy for a Clean Energy ratio target of 35% by 2024.

Expected GHG Emission Reductions

36,724 tCO₂/year

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ emissions) [tCO₂/year]
- = ((Reference power consumption) [MWh/year]
 - 0 [MWh/year]) × Emission factor [tCO₂/MWh]

Partner Country: Palau

Palau/ Introduction of 1MW Solar Power System on Supermarket Rooftop

PP (Japan): Sharp Energy Solutions Corporation, PP (Palau): Surangel & Sons Company

Outline of GHG Mitigation Activity

1MW solar power system is installed on the rooftop of a new supermarket to be built in Airai State, Republic of Palau, for self-consumption purposes. This is the first introduction of a mega solar system in Palau.

This project contributes to the achievement of Palau's policy for a renewable energy ratio target of 45% in 2025.

Expected GHG Emission Reductions

842 tCO₂/year

- = (Reference CO₂ Emissions) [tCO₂/year]
 - (Project CO₂ Emissions) [tCO₂/year]
- = ((Reference Power Consumption) [MWh/year]
 - 0 [MWh/year]) × Emission Factor [tCO₂/MWh]

Site of Project

Installation Site: Approx. 4km west of Palau International airport

Palau

