

NAMA and JCM

Enkhtaivan SANAA CDM National Bureau, Climate Change Coordination Office

> Ulaanbaatar 03 December 2013

Content

I. Current status of NAMAs in Mongolia

II. JCM as a tool to implement NAMAs

III. Possible projects and capacity building needs

NAMA

NAMA = Nationally Appropriate Mitigation Action

NAMA was first used in the Bali Action Plan agreed at the UNFCCC/COP13 in December 2007, and also formed part of the Copenhagen Accord issued following the UNFCCC/COP15 in December 2009.

Different countries, different nationally appropriate action on the basis of equity and in accordance with common but differentiated responsibilities and respective capabilities

Consistent with the sustainable development goals

Should be supported and enabled by technology, financing and capacitybuilding, in a measurable, reportable and verifiable (MRV) manner.

Mongolia's NAMA submission

Mongolia has associated with the Copenhagen Accord and submitted the list of NAMAs to the Climate Change Secretariat according to the Appendix II of Copenhagen Accord.

No	Sector and Actions (Publication date: 28 th January 2010)					
1	Energy supply - Increase renewable options					
2	Energy supply - Improve coal quality					
3	Energy supply - Improve efficiency of heating boilers					
4	Energy supply - Improving household stoves and furnaces					
5	Energy supply - Improve CHP plants					
6	Energy supply – Increase use of electricity for local heating in cities					
7	Building – Building energy efficiency improvement					
8	Industry – Energy efficiency improvement in industry					
9	Transport –Use more efficient cars					
10	Agriculture- Limit the increase of the total number of livestock by increasing the productivity of each type of animal, especially cattle					
11	Forestry –Improve forest management					

National Policy goals and targets

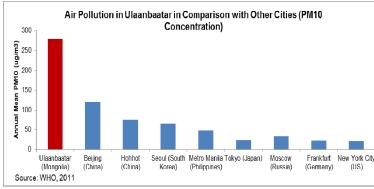
Name	NATIONAL ACTION PROGRAM ON CLIMATE CHANGE (approved by Parliament in 2011)
Specific Targets	Specific fuel consumption of electricity generated in the central energy system will be reduced by 10-20 gJ/ kW h, Specific fuel consumption of thermal energy production will be reduced by 20 kgJ/gCal compared to 2010, Share of Renewable energy sources in the energy balance will reach 10 %, Heat use will be reduced by 25 % [by the end of first phase].
Duration	2011-2021 (to be implemented in 2 phases)
Name	NATIONAL RENEWABLE ENERGY PROGRAM (approved by Parliament in 2005)
Specific Targets	To increase share of renewable energy in total energy generation to 20-25% by 2020, and to reduce system loss by more than 10% (baseline yr. 2005) by 2020
Duration	2005-2020
Name	NEW RECONSTRUCTION MIDTERM DEVELOPMENT PROGRAM (approved by Parliament in 2010)
Specific Targets	To decrease air pollution -30% by 2012, -50% by 2016 compared to 2010
Duration	2010-2016
Name	CONCEPT NOTE AND MIDTERM PROGRAM FOR GREEN DEVELOPMENT (DRAFT)
Specific Targets	To increase share of RE in the total installed capacity to 20% by 2020, and 30% by 2030 and to reduce CO2 emissions per GDP twice compared to 2006 by 2020, and 2.5 times by 2030.
Duration	2013-2032 (to be implemented in 2 phases)

Related projects/studies and cooperation activities

SECTORS	PROJECT NAME/DURATION	OBJECTIVE	IMPLEMENTING PARTNERS
Construction	Building Energy Efficiency/2009-2013	The goal is the reduction in the annual growth rate of greenhouse gas (GHG) emissions from the building sector in Mongolia	UNDP/Ministry of Construction and Urban Development
Transport	Green Public Transport /2012-2013	The project studies the feasibility and viability of converting diesel engine buses to eco-friendly engines as well as improving public transport in an effort to reduce GHG emissions and to improve air quality in Mongolia	GGGI/ MEGD
Forestry- REDD+	Biodiversity and Adaptation of Key Forest Ecosystems to Climate Change/2012- 2022	To conserve biodiversity by protecting important ecological areas and managing these in a sustainable manner which is adapted to meet the needs of climate change, while ensuring an improvement in living conditions for rural populations	GIZ & UNDP/ MEGD
Livestock and grassland	Strengthening Carbon Financing for Regional Grassland Management in North East Asia /2011-2013	Review of financing mechanisms for sustainable grassland management, Field assessments on carbon sequestration potential and monitoring of grasslands, Heightened awareness of carbon financing opportunities for sustainable grassland management, Development of terrestrial carbon financing opportunities for Northeast Asia	ADB/Ministry of Industry & Agriculture
Energy	Capacity Building Cooperation for Implementing NAMAs in a MRV-able manner	To develop detailed NAMAs implementation plan, identify methods to quantify emission reductions to be achieved, look into possibilities of establishing domestic MRV system	Overseas Environment Cooperation Center and MEGD
*~	Strategies for Development of Green Energy Systems	Assist in providing tools, training and ideas to help Mongolia to grow its economy with substantially less growth in GHG and other pollutant emissions	GGGI/Stockholm Environment Institute /Ministry of Energy, MEGD

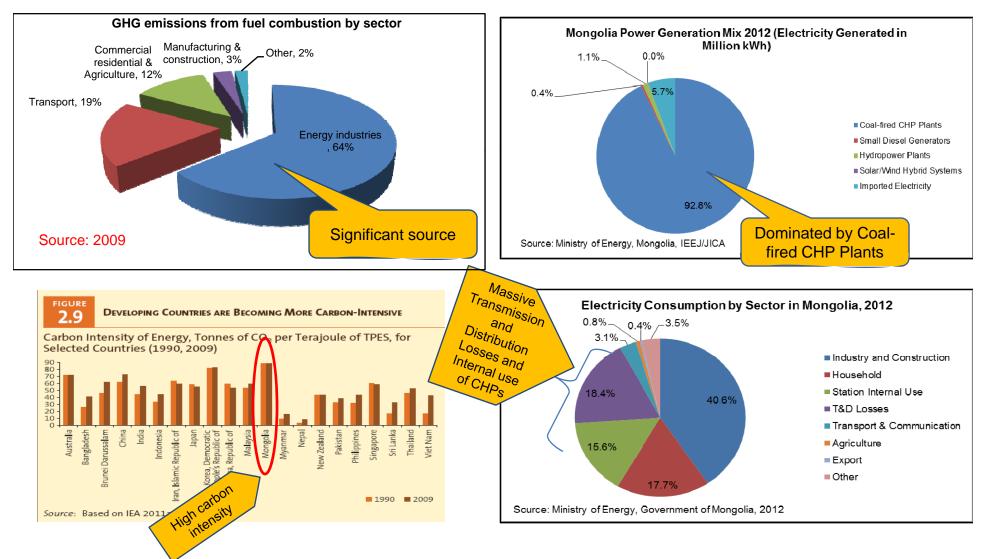
Cooperation for Implementing NAMAs in a MRV-able manner with OECC

Action 1. Identify BAU and NAMA scenario in the Energy Supply Sector


(A. on the biggest CHPs in capital city in 2012-2013)

- Action 2. Preparation of an Implementation Plan for NAMA
- Action 3. Preparation of MRV
- Action 4. Preparation of Institutional Arrangement for NAMA implementation
- Action 5. Collection of information on suitable technology

In 2013-2014, additional areas to be covered for NAMAs in energy supply sector such as renewable energy, energy efficiency improvement in HOBs, heating in Ger district.

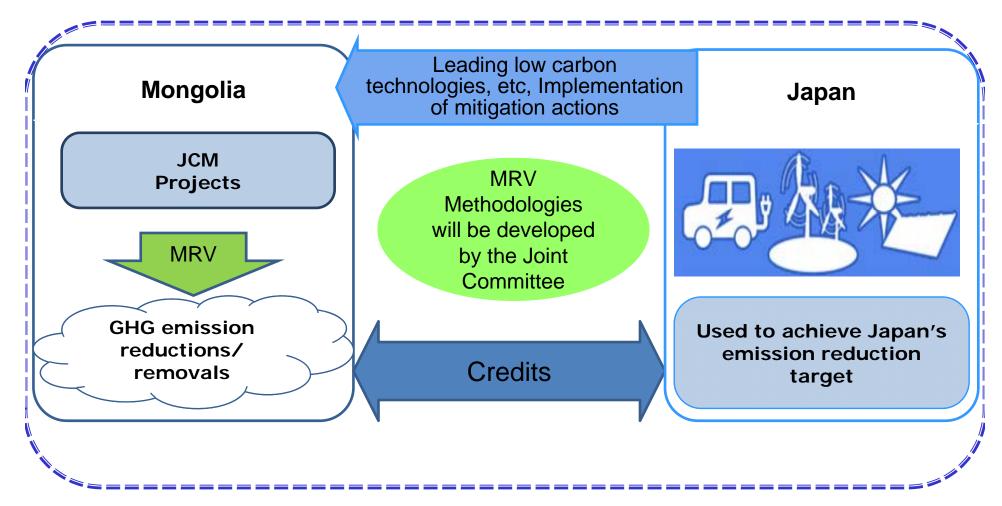


Air Pollution in Ulaanbaatar in Comparison with Other Cities

Why energy sector and especially CHPs ?

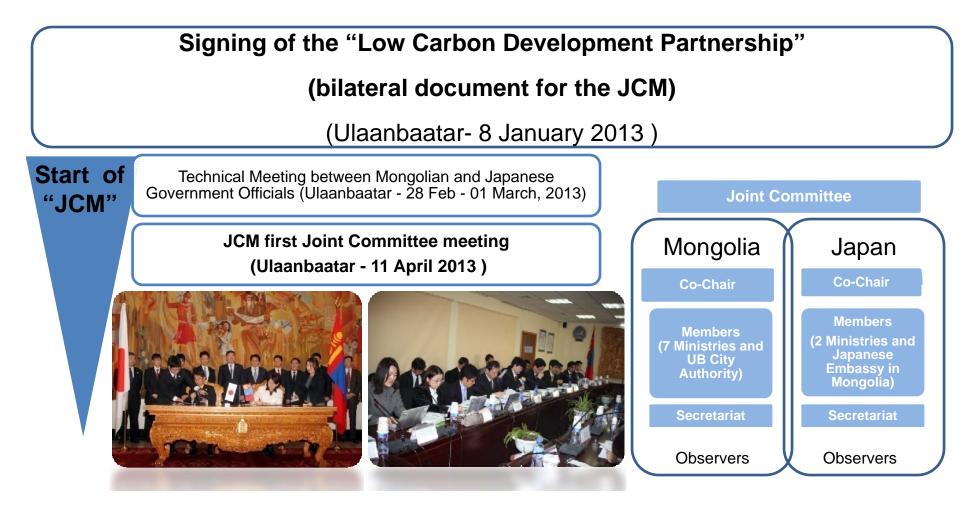
The energy sector is the most significant source of CO_2 emissions in Mongolia due to inefficient ageing coal-fired CHP plants and its fuel type (coal)

Content

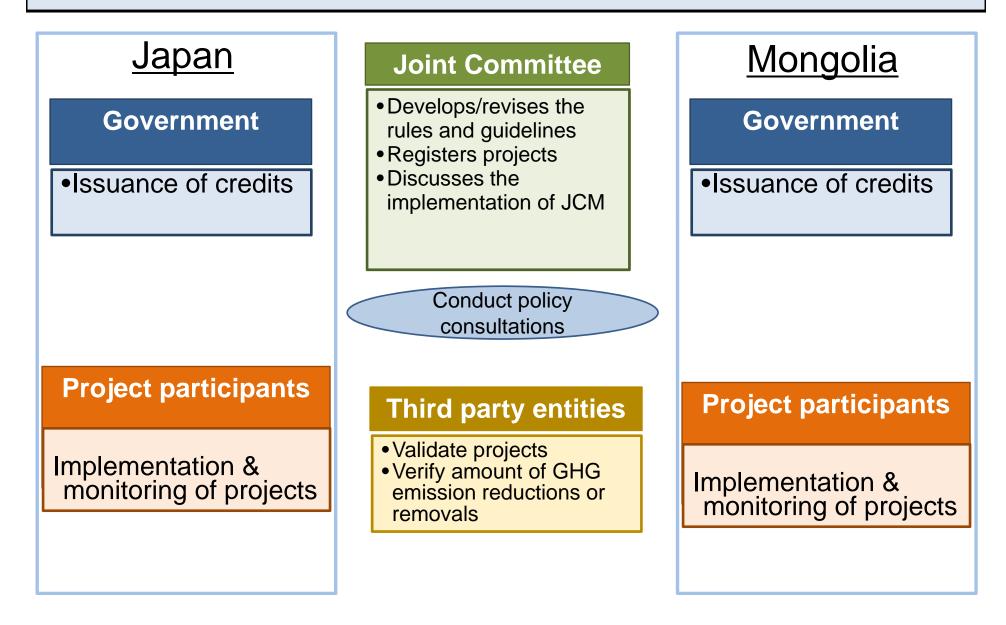

I. Current status of NAMAs in Mongolia

II. JCM as a tool to implement NAMAs

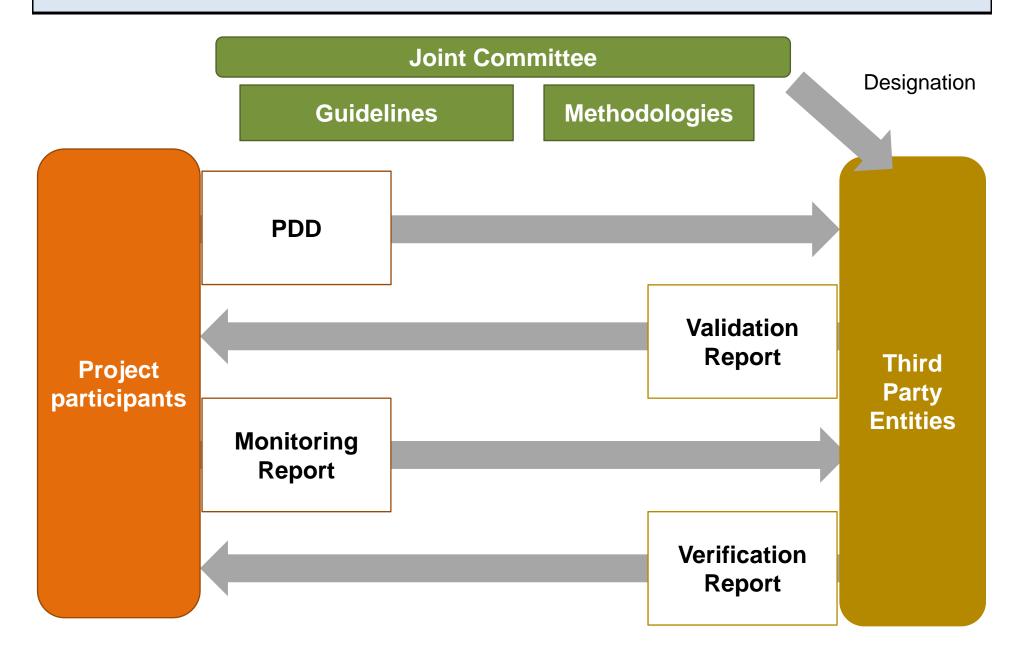
III. Possible projects and capacity building needs


JCM as a tool to implement NAMA

JCM=Joint Crediting Mechanism



JCM as a tool to implement NAMA


To implement NAMAs submitted to the UNFCCC, Mongolia is seeking various supports including **finance, technology transfer and capacity building** from bilateral and multilateral sources including ODA and soft loan etc.,

Governance Scheme of the JCM

Project cycle of the JCM

Current financing scheme

Global Environment Centre Foundation (GEC)

- Finance up to 50% of the initial investment cost
- Budgetary scale- 1.2 billion JPY/ 18 billion MNT(FY2013)

- Almost full finance, but the installed facilities need to be purchased by the consortiums at a discounted price later
- 3.1 billion JPY/ 46 billion MTG (FY2013)
- 50 million-1000 million per project / 733 million-14700 million MTG per project

MoEJ and METI

Content

- I. Current status of NAMAs in Mongolia
- II. JCM as a tool to implement NAMAs
- III. Possible projects and capacity building needs

Sector scopes for the JCM

1	Energy industries (renewable/non-renewable sources)
2	Energy distribution
3	Energy demand
4	Manufacturing industries
5	Chemical industries
6	Construction
7	Transport
8	Mining/ Mineral production
9	Metal production
10	Fugitive emissions from fuels (solid, oil and gas)
11	Fugitive emissions from production and consumption of halocarbons and sulphur
	hexafluoride
12	Solvent use
13	Waste handling and disposal
14	Aforestation and reforestation
15	Agriculture

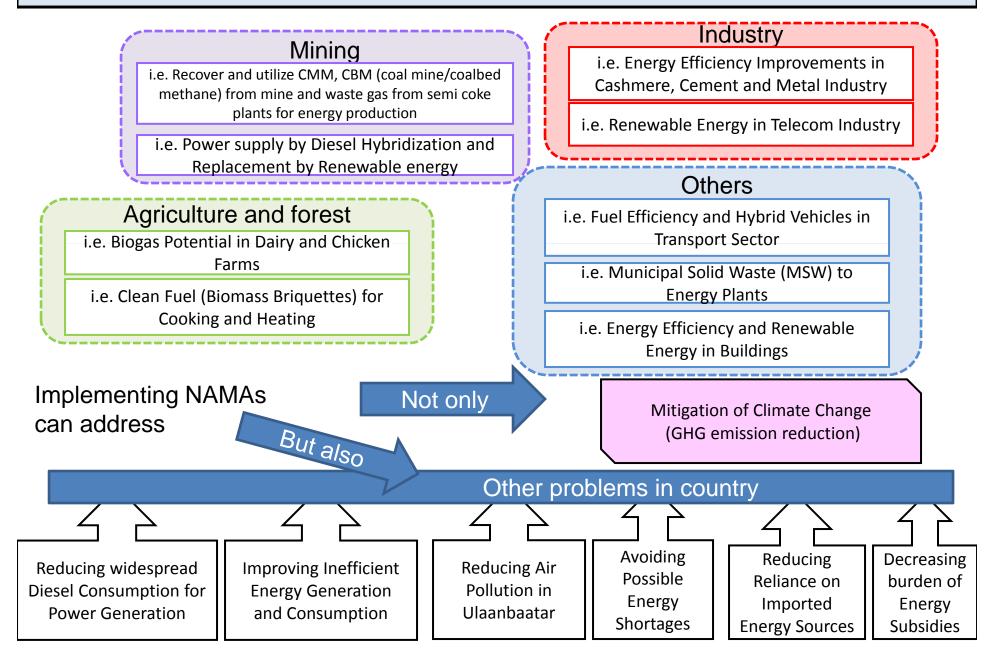
Selected projects for FY2013 (MOEJ's Subsidy)

Туре	Type Project title		Planned project site	Estimated GHG Reductions
JCM Mode project	Upgrading and Installation of Centralized Control System of High-Efficiency Heat Only Boiler	Suuri Keikaku; Anu-service	 (i) Bornuur soum (ii) 118th School, Khan-Uul District, Ulaanbaatar 	750 tCO2/year
JCM Projec Planning Study (PS)	10MW-scale Solar Power Plant and Rooftop Solar Power Generation System	Shimizu corporation; NREC, Sankou Solar Mongolia Co., Ltd, National University of Mongolia	 (i) Durgun (ii) Buildings in Ulaanbaatar (Not specified) 	(i) 16,500 tCO2/year(ii) 4 tCO2/year/project
JCM Methodolog Demonstrati Study (DS)	System by installation of High-	Suuri Keikaku	 (i) Bornuur soum (ii) 118th School, Khan-Uul District, Ulaanbaatar 	750 tCO2/year
	Improvement of Thermal Insulation and Water Cleaning/Air Purge at Power Plant	(Kanden Plant; CHP3; CHP4)	Ulaanbaatar	3,000 tCO2/year
JCM Feasibil Study	10MW-scale Solar Power Generation for Stable Power Supply	MyClimate Japan; Saisan; Unigas	Govi-Altai province, Taishir soum	17,537 tCO2/year
	Energy conservation at cement plant	Taiheiyo Engineering; Erel cement	Darkhan-Uul province	78,000 tCO2/year

Selected projects for FY2013 (METI and NEDO)

Туре	Project title	Entity	Planned project site	Estimated GHG Reductions				
	NEDO's Feasibility Studies with the Aim of Developing the JCM							
Feasibility Study	Feasibility StudyGHG emission reduction by introducing an energy-efficient complex in Ger area of UlaanbaatarTaka-gumi Co.,Ltd; MIBACE LLP)Ulaanbaatar (not specified)		500 t CO2/year/complex					
NEDO's Dissemi	nation and Promotion of Global Warmin	ng Countermeasure	Technology Progran	n Country: Mongolia				
Demonstration and verification project	High efficiency and low loss power transmission and distribution system in Mongolia	Hitachi Ltd.,	Oyu tolgoi – Tsagaan Suvraga transmission line	-				
Ministry of Economics, Trade and Industry (METI)								
Feasibility Study	Research on developing projects on wind power generation	Softbank; Mitsui Sumitomo Bank; Komai Haltek, Japan Research Institute, Ltd.,	Umnugobi Province, Tsogttetsii soum	-				

How can you involved in the JCM


- 1. Develop a project idea to reduce GHG emission
- 2. Partner with Japanese firms to develop consortiums
- 3. If possible, undertake feasibility studies for GHG-reducing projects, including how to calculate GHG emission reduction

Lesson learned?

1. Identifying suitable projects?

- I. Technology
- II. Emission reduction (could be not reducing GHG emissions or too complex and difficult to estimate)
- III. Policy support (co-benefit)
- IV. Pre feasibility study (some basic study)
- 2. Identifying potential partners?
- 3. Identifying possible financing scheme?

Other potential areas for mitigation

Conclusion

- Mongolia has been developing and vigorously promoting various policies and measures to mitigate greenhouse gases emissions by sources and to enhance greenhouse gas sinks by removals.
- Technology transfer and financing is essential part of NAMAs and it is very important to identify clean technologies that are best suited each countries for climate change mitigation and adaptation as well as funding source
- Various approaches such as Bilateral Offset Credit Mechanism (BOCM/JCM) could be used to implement NAMAs
- Establishing proper institutional arrangement is key for successful implementation of JCM/BOCM in Mongolia

Thank you for your kind attention!

www.mmechanisms.org

www.climatechange.gov.mn

JCM Methodology Formats

- Key Features of the methodology formats
 - The methodology formats should be designed, so that project proponents can use them easily, verifiers can verify the data easily, and calculation logic is disclosed transparently.
 - In order to reduce monitoring burden, default values should be widely used in conservative manner.

Eligibility	 A "check list" will allow easy determination of eligibility of a proposed project under the mechanism and applicability of methodologies to the project.
Method	 Flow chart will guide project proponents to the most appropriate calculation method for the proposed project.
Data	 List of required parameters will inform project proponents of what data is necessary to calculate GHG emission reductions/removals with methodologies. Default values for specific country and sector are provided beforehand.
Calculation	 Premade spread sheets will help calculate GHG emission reductions/removals automatically by inputting required parameters, in accordance with methodologies.

Image of JCM Methodology Formats (1/5)

- Eligibility
 - Simple check list is provided for project proponents to determine the eligibility of a proposed project under the mechanism and applicability of the methodology
 - ≻All the criteria have to be met in order to apply a methodology.

Example: High-Performance Industrial Furnace

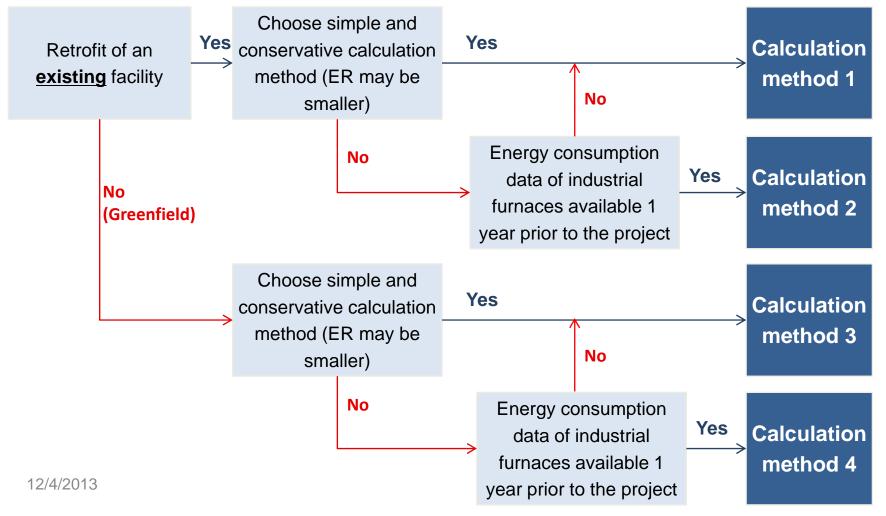
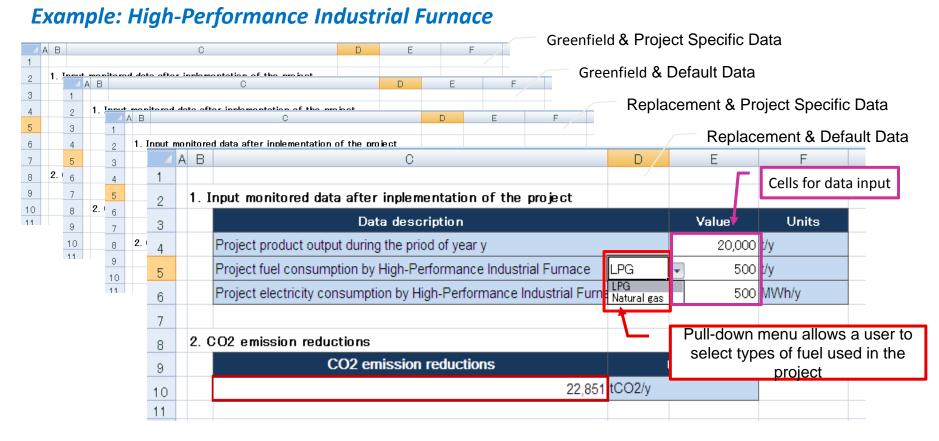

	Eligibility	Check
Criteria 1	 High-performance industrial furnaces implemented in the planned project are equipped with regenerative burners. 	\checkmark
Criteria 2	 High-performance industrial furnaces are implemented in the aluminum sector of the host country. 	\checkmark
Criteria 3	 The same heat source is used by the waste heat generating facility and the recipient facility of waste heat. 	\checkmark
Criteria 4	 Unused waste heat has to exist with in the project boundary prior to the planned project implementation. 	\checkmark
Criteria 5	 Fossil fuels and electricity consumption by the high- performance industrial furnaces have to be measureable after the project implementation. 	\checkmark

Image of JCM Methodology Formats (2/5)

Method


Flow chart will guide project proponents to the most appropriate calculation method for the proposed project

Example: High-Performance Industrial Furnace

Image of JCM Methodology Formats (3/5)

- Data input
 - > Project proponents are requested to input data in the data sheet only.
 - >Spread sheets are prepared for different methods.

An example above provides different cases for greenfield project and existing (replacement) project and required data for each case.

Image of JCM Methodology Formats (4/5)

Calculation of Emission Reductions/removals

- Spread sheets for calculation logic are provided in separate sheets and data input in the "data input sheet" automatically calculate emission reductions/removals.
- > Default values should be widely used, in a conservative manner, in order to reduce monitoring burden.

Example: High-Performance Industrial Furnace

1 2 1. Estimation of CO3 aminution and actions 3 CO2 on 1 1	_(C	Provide the International Constant D. E. F. G.				
4 2. Default v 2 1. Estimatic A D 5 Netcalo 3 CO2 en 4 2. Default v 2 1. Estimatio	10	A B	C	D	E	F	G
7 CO2 em 5 Nat cale 3 CO2 em 8 3. Estimatic 6 CO2 em 4 2. Default va 9 Referen 2 CO2 em 5 Nat cale	lue	1. Esti	mation of CO2 emission reductions	Energy type	Value	Units	Symbol
10 C02 8 3. Estimatic 6 C02 em	104 3		02 emission reductions		22,850.5	tCO2/y	ER _y
12 4. EStimatic 10 CO2 8 3. Estimation 13 Projecti 11 Proj 9 Reference Proj 9 CO2	A 2.4	2. Def	ault values of the selected energy				
14 Prop 12 4. Estimate 10 C02 15 Neti 10 Project 11 Project 11 16 C02 14 Proj 12 4. Estimate	ctp _	Ne	t calorific value of fossil fuel	LPG	50.8	GJ/t	
17 Proje 16 Neti. 13 Project C 18 CO2 16 CO2 14 Project C		CC	02 emission factor of fossil fuel	LPG	0.0599	tCO2/GJ	EF _{6.y}
10. Included the local of	emi 7	CC	02 emission factor of electricity	Electricity	0.456	tCO2/MWh	EF
19 Cost 17 Proje 15 Free 15 20 Cost 17 Cost 16 Cost 26 21 Net 18 Cost 17 Proje 17 22 LP3 19 17 Proje 12 23 Net 19 Cost 19 Cost 19 Cost 19 23 Net 19 Cost 19 Cost 19 Cost 19	emi 8	3. Esti	mation of reference emissions				
21 Net 19 22 LPD 20 Cota 23 Net 21 Net 0	^{ult.} 9	Re	ference CO2 emissions		24,600.0	tCO2/y	REy
22 UPG 23 Natur	10		CO2 emissions per product unit in the reference scenario		1.23	tCO2/t	AREENY
	11		Project product output during the priod of year y		20,000	t/y	POy
	12	4. Esti	mation of project emissions				
	13	Pr	oject CO2 emissions		1,749.5	tCO2/y	PEy
	14		Project fuel consumption by High-Performance Industrial Furnace	LPG	500	t/y	PFC _{LY}
	15		Net calorific value of fossil fuel	LPG	50.8	GJ/t	NCV _{LY}
	16		CO2 emission factor of fossil fuel	LPG	0.0599	tCO2/GJ	EF _{60y}
	17		Project electricity consumption by High-Performance Industrial Furnace	Electricity	500	MWh/y	PECy
	18		CO2 emission factor of electricity	Electricity	0.456	tCO2/MWh	EF
	19		[Defection to a second				
	20		[Default values] Net calorific value of fossil fuel				
12/4/2013	21 22		LPG		GJ/t		
	23		Natural gas	43.5	GJ/1000Nm3		

Image of JCM Methodology Formats (5/5)

- Description of methodologies
 - Details of methodologies should be described by writing and calculation formula so that project proponents can understand logic behind and to enhance transparency.

Structure of the methodology

- Project description
- Eligibility
- Calculation method selection
- List of required data
- Project boundary
- Reference scenario
- Calculation
- Monitoring

744117-08-081881881881	765±00-05¥ 185±04 Fom). 400-000 (w.0	Paraget-sectargeterical	Party Forther International	TATUTA-INTIALERATIA
COURSE IN TAILED AND AND AND AND AND AND AND AND AND AN	<text><text><list-item><section-header><section-header><section-header></section-header></section-header></section-header></list-item></text></text>	1 EXAMP CARACTERISTIC DEPARTMENT OF THE DEPARTMENT.	1 0.028 1	<section-header><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header>
a fa	-1-	-1-	-1-	
	TANKTO-IN CANADANA Markatana R. CANADANA LINING	Polytholisian and a solution of the solution o	71.577-52-52002287585. 2000-00-10 2001-00-10	74.5 10 5 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -
Image: Instrument in the instrument instrum	 Proc. 2011. UTV. (PC) Proc. 2011. UTV. (PC) Proc. 2011. UTV. Proc. 2011. UTVV. Proc. 2011. UTVV. Proc. 2011. UTVV. Proc. 2011. UTVV. Proc	$\label{eq:response} \begin{array}{l} \begin{array}{c} \mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} & \mathbf{P}_{13} \\ \mathbf{P}_{13} $		