SUMITOMO - FOSTER WHEELER CFB BOILER

Reliable & Proven Design for Circulating Fluidized Bed Boiler CFB Power Plant by Sumitomo

- 1. Sumitomo Heavy Industries in brief
- 2. Principals of CFB technology
- 3. Reliable design
- 4. Hard design improvement
- 5. Track Records

Sumitomo Heavy Industries, ltd.

1. Sumitomo Heavy Industries in brief

Sumitomo Group in brief

A Member of Sumitomo Group

- Sumitomo Heavy Industries(SHI)
- Sumitomo Chemical
- Sumitomo Metal
- Sumitomo Mitsui Banking Co.
- Sumitomo Corporation
- Sumitomo Electric
- · NEC
- Sumitomo Osaka Cement
- Sumitomo Warehouse
- · Mazda
- · Asahi Beer
- Meidennsha
- Nippon Sheet Glass
- Sumitomo Mitsui Construction

- --Industrial Machinery & Engineering
- --Fine Chemicals
- --Steel
- --Banking & Financing
- --Corporation
- --Electrical/Optical Cable
- --Electronics
- --Cement & Ceramics
- --Logistics
- --Automobile
- --Brewery
- --Heavy Electrical
- --Glass
- -- General Construction

Total 47 companies, 266 thousand employees

Sumitomo Heavy Industries in brief

Products Line

Component Technologies for Coal Fired Power Plant

Turbines and Pumps

Boiler

Pressure Vessels

Vater Treatment

Sumitomo - Foster Wheeler Alliance

Sumitomo - Foster Wheeler CFB Market Share

Source: 2008 McCoy Power Reports, All boiler types and sizes, Excludes domestic orders provided by domestic suppliers in China, India, Japan, and S. Korea, Other includes suppliers with less than 2% market share, Market Share based on MWe

Delivery Record of SHI's CFB Facilities

Status	JAPAN	Other Countries	Total
In Commercial	29 units	11 units	50 units
On Going	5 units	5 units	

2. Principals of CFB technology

2. Principals of CFB technology

2-2. Principally Fuel Flex Furnace

Long Combustion time

Circulating combustion realizes better combustion efficiency for un-reactive fuels. Low volatile fuels etc.

- Large heat capacity in Furnace (Bed)
 Large heat capacity makes high moisture fuels stable combustion.
 High moisture coal, Biomass, Peat etc.
- Controlled (designed) Furnace temperature
 Reasonable Emission control
 Avoiding clinkers / Slugging
 Low melting Ash (>1150'C) Fuel NOx SOx

Well Fluidization in Bed Area

Fluidization makes fuel spreading, crushing, and avoiding heat spot
Large size fuels, various figure fuels,
Renewable Fuels (Tire, RPF, etc)

Sumitomo – Foster Wheeler CFB Fuel Experiences

Coals (Lignite, Bituminous, Anthracite), low grade coal, pet-coke Renewable energy fuels (Biomass, TDF, RPF, Sludge, etc.)

Item	Range	Typical Fuel
Moisture	Up to 60%	Lignite Coal, Peat, Sludge
Ash	Up to 76%	Waste Coals
Sulfur	Up to 8%	Waste Coals, Petcoke
Volatiles	Down to 0%	Petcoke
LHV(AR)	Down to 1,500 kcal/kg	Waste Coals, Biomass

3. Reliable design

CFB pilot combustion test -Test facility

CFB PILOT TEST FACILITY
OVERVIEW

SHI Niihama Laboratory Ehime pref., Japan

-Outline-

Thermal input 1 MWth Furnace ϕ 600 x 20mH

- -All fuels are tested by the pilot facility before actual commercial boiler design
- -Every single fuel & co-combustion technology are developed by means of this facility
- -More than 100 combustion tests were held in past 9 years

Pilot Plant Combustion Test with Actual Fuel

SHI has its own pilot scale CFB plant in Japan

4. Hard design improvement

Foster Wheeler Compact CFB Design

Conventional CFB = [PLATE CYCLONE]

Old Technology (originated by Ahlstrom)

Sumitomo = [WATER-COOLED CYCLONE]

Advanced Technology (developed by Foster Wheeler and licensed to Sumitomo)

Water-Cooled Cyclone

5. Track records

149 MWe Coal-Fired CFB – Reheat unit J-Power/Taiheiyo Cement, Itoigawa, Japan

Start-up

Steam Flow

Steam Pressure

Steam Temperature

Power Output

Fuel

Emission SO₂

NOx

Service

Gross Plant Efficiency

July 2001

475 t/h

17 MPa

569/541 °C

149 MWe

Semi-Anthracite 90 ppm(6%O₂) 120 ppm(6%O₂) IPP

42.8 %(LHV)

<Outstanding Features>

- 1. 1st large CFB with reheat in Japan
- 2. 40% to 100% daily swing operation

149 MWe Coal-Fired CFB – Reheat unit J-Power/Taiheiyo Cement, Itoigawa, Japan

All of actual performances find everything satisfactory

Guaranteed item	าร	Guarantee value	Actual performance	Notes
Boiler efficiency	%-LHV	91.6	91.6-92.1	Calc. code : JIS
Gross plant efficiency	%-LHV	42.8	43.3-43.5	
NOx emission	ppm	Less than 120	61-73	6%O ₂ -dry basis
SO ₂ emission	ppm	Less than 90	59-64	6%O ₂ -dry basis
Dust in flue gas	mg/Nm³	Less than 30	2-7	
Cold start	hours	Less than 12	12	After 50 hours or later from shut down
Warm start	hours	Less than 8	7.5	Before 50 hours or less from shut down
Load change rate	%/min	±2	±2	50-75-100 %MCR

205 t/h x 2 Lignite-Fired CFB VND-PROJECT, Vietnam

<Outstanding Features>

- First CFB Boiler operated in Vietnam
- First coal-fired IPP project in Vietnam
- First power business by VINACOAL
- Minemouth project using high ash(30%), high sulfur(6%) lignite

Steam flow 2 x 205 t/h Steam press. 13 MPa Steam temp. 540 °C

Power Output 56 MWe x 2units

Fuel Lignite

Ash(30%), S(6%)

T.M.(19%)

Emission SO_2 <191 ppm(6% O_2) NOx <490 ppm(6% O_2)

TUAS POWER LTD, Singapore

3 x 450t/h CFB

Crushed PKS

Unit 1 had successfully achieved 100% load at first trial in January 2013.

<Outstanding Features>

- Singapore's first Coal fired Power Plant

Start-up Unit 1 April 2013

Unit 2 November 2013

Unit 3 (not decided yet)

Steam Flow 3 x 450 t/h Steam Pressure 10.5 MPa

Steam Temperature 510 ° C

Fuel Indonesian Low Rank Coal

PKS Max20%

Service Co-Generation

Nippon Daishowa Paperboard, Otake, Japan

280t/h, Coal/ Sludge CFB

Start-up		April 2009
Steam Flow		280 t/h
Steam Pressure		10.3 MPa
Steam Temp.		535 ° C
Boiler Efficiency		90.3%
Power Output		30 MWe + 18 MWe
Fuel	99%	Indonesian Satui Coal
	1%	Paper Sludge
Emission SO ₂		30 ppm(6% O ₂)
NOx		80 ppm(6% O ₂)
Dust		30 mg/m3N _(6% O₂)
Service		Cogeneration

<Coal Comparison Information>

	Carbon	Volatile	Ash	S	HHV
Satui Coal	43.8%	45%	11.1%	0.85%	25.2MJ/kg
Berau Coa	I 50.5%	44%	5.5%	0.64%	25MJ/Kg

<Outstanding Features>

- **CFB** firing Coal
- 2. Special Design for Coal 1) Furnace Bottom Kick-out Tube Design
 - 2) Compact Separator (Water-Cooled Cyclone)