Issues and Measures for Low Carbon Society in Mongolian Electricity Sector

T.T. Network Infrastructure Japan
(Joint Venture of TOSHIBA Corporation and Tokyo Electric Power Company)

December 3, 2013
What’s TTNI?

TOSHIBA
Leading Innovation

TEPCO

JV for Global Electric Power T&D Business

TTNI Japan

Toshiba’s Strength
State-of-the-art Technologies & Products/Solutions, Vast Experience in Electric Power Network

TEPCO’s Strength
Knowledge/Know-How/Experience in Planning and Operation & Maintenance of Electric Power Network

To realize and expand

End-to-End Total Solution Business in T&D market

Such as:

For developing countries
- Consultancy for network planning (master plan, system design, etc.)
- Operation & maintenance support

For advanced / developed countries
- Solutions to improve withstandability against disasters
- Reliability improvement for network stability, network expansion, grid connections, etc.
- Optimal utilization of renewable energy through integration solutions

For islands or remote regions
- Realization of environmentally friendly systems
Today’s Agenda

1. Energy Efficiency Improvement by Replacement of the aged and deteriorated transformer to the new transformer
 - Introduction of TOSHIBA’s High Efficiency Transformers

2. Measures to expand the introduction amount of renewable energies
 - Power Grid Stabilization by Li-ion Batteries (TOSHIBA’s product: SCiB™)

SCiB=Super Charge ion Battery
1. Energy Efficiency Improvement by Replacement of the aged and deteriorated transformer to the new transformer

Introduction of TOSHIBA’s High Efficiency Transformers
Introduction of High Efficiency Transformer

Background
- The most of existing transformers in Mongol had been installed in 1960-70s, and they have been operated over 50 years. At the same time, some transformers are difficult to maintain due to the lack of repair parts. And these old transformers have comparably large losses.

Issues
- The transformer losses are rather large.
- Some transformers are difficult to maintain due to the lack of repair parts.

Measures
- To reduce losses by replacing the old transformer to the new high-efficiency transformer utilizing new technologies.
 - To reduce fuel costs and GHG emissions
 - To reduce air pollution
Features of High Efficiency Transformer

- TOSHIBA’s cutting-edge analysis technologies
 - Well skilled 2D / 3D magnetic flux distribution and stray loss
distribution analysis technologies using CAE methods. Such
 technologies enable to chase location and level of stray loss of the
 transformer precisely.

- Feature 1:
 - Effective allocation of Magnetic shield and magnetic shunt structure
- Feature 2
 - Effective slitting on core sheets and core tie plates to cut eddy current.
- Feature 3
 - Application of the transposed cable to the winding for reduction of stray
 loss in the winding conductor
TOSHIBA’s cutting-edge technologies
- Analysis of leakage flux distribution -

Toshiba has well skilled leakage flux analysis technologies based on manufacturer’s experiences.
TOSHIBA’s cutting-edge technologies

-3D Magnetic Field Analysis and Stray Loss Analysis-

3D CAE flux distribution analysis and stray loss distribution analysis are also available. These CAE technologies enable precise and reliable chase of stray loss location and its level.
Magnetic shield is applied onto inside wall of the transformer tank. This magnetic shield prevents for the flux to leak to the transformer tank wall. If the flux leaks to the tank wall, tank local heating occurs to increase stray losses.
If the leakage flux leaks to the steel structure of core and coil clamping materials, local heating also occurs on such portions. Magnetic shunt structure prevents such leakage of the flux to the core/coil clamping materials.
Feature 2-(1): Slitting on the Core Lamination

Slit core sheets are applied on end step of the core lamination. Slitting effects to cut eddy current in the core sheets.
Not only core sheets but also core time plates are also slit to cut eddy current.
Feature 3: Reduction of Coil Stray Losses

Application of Transposed Cable

* Reduction of Eddy Current Loss of Coil Conductors

Transposed cable is applied to reduce stray loss caused by skin effect and proximity effect.
A loss transition example according to manufacture years for same rating transformers (168MVA)

The loss has been reduced more than 20% since 1970s.
2. Measures to expand the introduction amount of renewable energies

Power Grid Stabilization by Li-ion Batteries (TOSHIBA’s product: SCiB™)
Power Grid Stabilization by SCiB

Background

Issues
- However, all of the CES (Central Energy System) power supplies are comprised of coal burning generation plants, therefore, the load-following is difficult.
 - If massive renewable energy is introduced, the frequency and voltage will be unstable. Therefore, it will be more difficult to adjust supply and demand.

Measures
- The introduction of SCiB™ is necessary.
 - To keep grid stability and massive renewable energies
 - To reduce fuel costs
 - To reduce GHG emissions and air pollution
Future issue for introduction of renewable energies

Renewable energy output is changed rapidly in accordance with weather condition. However, existing power plant (e.g. Coal burning generation) can not follow completely its fluctuation.

SCiB™ solves this future issue.

Battery mitigates the fluctuation caused by renewable energies.

SCiB™ supports to introduce large amount of renewable energies in the existing Mongolian power grid.
TOSHIBA’s energy storage system

Features of SCiB™

- **Long Cycle Life**: Usable for more than 10,000 charge-discharge cycles
- **High Output**: Input/Output power density equivalent to a capacitor
- **Rapidly Rechargeable**: Rechargeable in approx. 5 minutes
- **Cryogenic Operation**: Usable in extremely cold environment (-30°C)
- **High Effective Capacity**: High amount of actual usable energy over a wide range of SOC

Battery Energy Storage System

- 20Ah SCiB™ Battery Cell
- SCiB™ Module
- Battery Panel (24kWh) (connect up to 160 panels)
- Battery system
- Containerized

SCiB™ can charge and discharge the power quickly under low temperature condition.
Comparison of SCiB™ and Other Batteries

<table>
<thead>
<tr>
<th></th>
<th>Lead-Acid</th>
<th>Ni-MH</th>
<th>NaS</th>
<th>Conventional Lithium-ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity/Weight</td>
<td>Big & Heavy</td>
<td>1/2 of Lead-Acid</td>
<td>1/3 of Lead-Acid</td>
<td>1/4 of Lead-Acid</td>
</tr>
<tr>
<td>(Energy Density)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life-Cycle</td>
<td>Capacit 500Cycle</td>
<td>1000~1500Cycle</td>
<td>4500Cycle</td>
<td>Operate At 300-320℃</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Temperature</td>
<td>300-320℃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge/Discharge Performance</td>
<td>0.1C(10Hrs-rate)</td>
<td>0.5~1C</td>
<td>0.15C(10Hrs-rate)</td>
<td>1C</td>
</tr>
<tr>
<td></td>
<td>3C(1 min)</td>
<td>1~2C</td>
<td>1~2C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FAST</td>
<td></td>
<td>FAST</td>
<td></td>
</tr>
</tbody>
</table>

Operate in low-temp

Long Life Cycle

Rapid charge/discharge

© 2013 Toshiba Corporation
Inherent Safety of SCiB™

Common batteries
In case of disasters, common batteries have possibility to be damaged and cause the rupture.

SCiB™
SCiB™ has a structure that assures an extremely low incidence of internal short circuits. A high level of safety in preventing thermal runaway is assured even if an internal short circuit is forced.

Crush test results
SCiB™ does not cause the secondary disaster after the outside accident.
Solution Example utilizing SCiB(1)

Fluctuation Suppression Control

Wind power generation

Generated power

Monitoring

Discharge

Charge

Output power of PCS

Output Power of Power System

Outputs will be smoothed.

The output of WF is smoothed by controlling a battery system.
Solution example utilizing SCiB(2)

Peak-shift Control

Control of surplus power generated by Wind generator

The surplus power generated by wind generator can be utilized efficiently.
Expected effects

1. Energy Efficiency Improvement by Replacement of aged and deteriorated transformers
 - Introduction of High Efficiency Transformer
 By reduction of transformer losses, appropriate generator output capacity is realized to reduce amount of fuel consumption. And GHG will be reduced.

2. Measures to expand the introduction amount of renewable energies
 - Power Grid Stabilization by SCiB™
 SCiB™ supports to introduce large amount of renewable energies with grid stabilization.
Thank you for your attention!

Баярлалаа