CDM Project Issues and Analysis

Carbon Finance Project Development Workshop

Ulaanbaatar, Mongolia
June 23-24, 2008
Pre-project implementation (one time)

1. Project Design Document preparation
2. Host country approval
3. Project validation
4. Project registration

Post-project implementation

5. Project Monitoring
6. Project verification & certification
7. Issuance of carbon credits FY1

FY2..FY3
“Baseline” Methodology

• Approved procedure to determine emission reductions from a project activity over time including:
 - determination of emissions in the relevant reference scenario (baseline) and in the project scenario
 - procedures to collect and use data to calculate emission reductions: monitoring
 - demonstration that the project reduces emissions compared to baseline: additionality

• Approval of methodologies by CDM Executive Board
Concept of “Additionality”

• The most complex feature of CDM
• **Additionality** is demonstrated if GHG emissions are reduced below those that would occur in the absence of the CDM project
• Additionality assessment is part of CDM Methodology utilizing typically **Additionality Tool**
 - More simple assessment is available for small scale projects
Additionality Tool

Step 1. Identification of all realistic/credible alternatives to proposed project

STEP 2: Investment Analysis
CDM most financially attractive

STEP 3: Barrier Analysis
At least one alternative not prevented by a barrier

STEP 4. Common Practice Analysis
Similarity can be reasonably explained

Project is Additional
Project is NOT Additional
Main Issues

- Baselines are counterfactual/hypothetical
- Determining “additionality” based on subjective assessment

The difference between the actual project emissions and the emission baseline constitute the volume of CERs

If project = baseline → no CERs
Financial Issues

Higher annual cash flow and Internal Rates of Return
- Up to 3.0% incremental IRR for renewables / energy efficiency
- >$3-8 per MWh for renewables, energy efficiency
- >20% incremental IRR for CH₄ (i.e. landfill gas)
- Much higher IRRs for N₂O and HFC projects

High quality cash flow and contract value
- OECD buyers (investment-grade payers)
- $ or € denominated
- Long-term contract with no price fluctuation guarantees flow
- Payments abroad eliminate currency conversion and transfer risks

ER revenues + Financial engineering allow access to capital market and boost project bankability (borrowing against ER streams)
• Payments are typically made against delivered ERs to the Project Sponsor over the Crediting Period
• Crediting period can be 10 years or renewable 3*7 years
• Example:
 – ERs are generated in 2008
 – ERs are verified in early 2009
 – Payment is made on VER contracts based on positive verification report
 – Payment is made on CER contracts based on positive certification and issuance of CERs by CDM Executive Board
Financial Issues

• Upfront payments possible
• Maximum of 25% of value of ERPA (Emission Reduction Purchase Agreement)
• Not exceeding investment cost
• (Bank) Guarantee required
Financial Issues – Pricing CERs

- Adding/subtracting adjustments for different risk components and risk allocation in ERPAs
 - Project risk
 - Kyoto regulatory risk
 - Purchase beyond 2012
 - Other ERPA Terms and other project factors

- Sometimes additional price /discounts
 - Additional community and/or environmental benefits
 - Market premium/discount for technology and region/country

- Price adjustments
 - Upfront payment
 - Costs and expenses
Legal Issues

- Compliance with CDM Rules
- Creating and owning VERs/CERs - Issuance and Registry
- Negotiating ERPA
Generation of GHG emission reductions (in tonnes of CO2e)

Approval of the Methodologies, Registration of the Project, Issuance of Certified Emission Reductions

Verification by a Designated Operational Entity

ERPA \Rightarrow VERs \Rightarrow Approval of the Methodologies, Registration of the Project, Issuance of Certified Emission Reductions

CERs

Legal Issues
Legal Issues – Issuance and Registry

Forwarding to national registries

CDM registry
- Pending account
- Share of proceeds accounts
- Permanent holding accounts
- Temporary holding accounts

National registry
- Holding accounts
- Holding accounts

‘Forwarding’

Kyoto checks performed by ITL
Purpose of ERPA
- Record agreement
- Identify responsibilities
- Establish rights
- Manage risk
ERPA – Main Features

• Two parts
 - General conditions - standard terms, conditions, rights/obligations
 - Negotiated agreement - purchase amount, price, payment terms, preconditions, risks and warranties

• Sale and Purchase agreement
 - Object ERs
 - Amount, Price and Payment

• Who does what
 - Validation
 - Registration
 - Verification
 - Certification

• Risk - allocated to the party best able to bear it
 - Project risk (to be borne by Project Entity)
 - KP regulatory /baseline risk (to be borne by Trustee)
 - Market risk (shared)
ERPA – Key Provisions

• Definitions
• Payment upon delivery
• Monitoring and Verification
• Project Development and Operation
• Events of Defaults
• Remedies
• Termination events
ERPA – Risk Allocation

<table>
<thead>
<tr>
<th>Methodology risk - change in methodology (e.g. baseline and monitoring methodology) from ERPA signing reduces ERs generated</th>
<th>Buyer</th>
<th>Seller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration risk - e.g., project not registered due to additionality/methodology</td>
<td>Buyer</td>
<td>Seller</td>
</tr>
<tr>
<td>Request for review risk - EB reviews DOE’s verification which could delay, reduce or eliminate CER issuance</td>
<td>Buyer</td>
<td>Seller</td>
</tr>
</tbody>
</table>
ERPA – Obligations

<table>
<thead>
<tr>
<th>Verification - contracting for DOE to undertake verification</th>
<th>Buyer (Trustee)</th>
<th>To be negotiated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal Point - who communicates with EB (principally relates to issuance)</td>
<td>Buyer</td>
<td>Buyer or Joint Buyer/Seller</td>
</tr>
<tr>
<td>Share of proceeds - who pays the share of proceeds</td>
<td>Buyer</td>
<td>Seller</td>
</tr>
<tr>
<td>Payment by Buyer</td>
<td>60 days after receipt of Transfer Form that follows Verification</td>
<td>60 days after CER delivery</td>
</tr>
</tbody>
</table>
ERPA – Default Issues

- Transfer Failure
- Dissolution/liquidation/bankruptcy
- Material delay in construction
- Material breach of terms of ERPA
- Repeated failures to comply with CDM rules
- Failure to meet the requirements of the Monitoring Plan
ERPA – Remedies

<table>
<thead>
<tr>
<th>Buyer Remedies</th>
<th>VERs</th>
<th>CERs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intentional breach</td>
<td>Cost recovery + damages</td>
<td>Costs + liquidated damages in the amount of: ERs x (spot price – unit price)</td>
</tr>
<tr>
<td>Not an intentional breach</td>
<td>(i) Allow delivery in subsequent years, (ii) reduce annual amounts + increase option, or (iii) terminate after 3 years</td>
<td>Same as for VER</td>
</tr>
<tr>
<td>Seller remedies – Project Entity</td>
<td>(i) Recover outstanding payments + interest, and/or (ii) terminate ERPA</td>
<td>Same as for VER</td>
</tr>
</tbody>
</table>
ERPA – Other Issues

• Costs
 - Deduction of project preparation / KP related costs from annual payment (capped) by Trustee/Developer in the Annual Payments

• Taxes
 - Deduction of Host country taxes by Trustee/Developer

• Disputes
 - Governing law - English Law
 - Arbitration - UNCITRAL
Case Study

Abanico Hydroelectric Project in Ecuador
• 30 MW Run-of-river mini hydroelectric plant in Ecuador

• Project developed in two phases:

 ▪ **Phase I:**
 ▪ Installed capacity: 14.9 MW
 ▪ Annual average generation: 111 GWh
 ▪ Investment cost: US$ 21 million
 ▪ Commissioning & Start up date: Jan-2006

 ▪ **Phase II:**
 ▪ Additional capacity: 14.9 MW
 ▪ Increment in annual average generation: 111 GWh
 ▪ Investment cost: US$ 12.5 million
 ▪ Commissioning & Start up date: Jan-2008

• Financially viable (~16% IRR; US$ 1.1 million / MW)
• High Country Risk (CCC+ sovereign rating by S&P) in the Latin America Region
• The lowest Foreign Direct Investments in South America (US$ 4.8b in 1998-2002)
• Among the highest local interest rates worldwide (14-15% in $ terms)
• Negative business environment for the energy sector

➢ **Result:** no private hydroelectric plants
Baseline Methodology: “Consolidated baseline methodology for grid-connected electricity generation from renewable sources ACM 0002”;

Additionality / Eligibility for CF: “Tool of the demonstration and assessment of additionality”. Analysis based on country risk and sectoral barriers, demonstrating that such project is not “business as usual” and that CF alleviates existing hurdles;

Emission Factor: Calculated according to CDM methodology = 0.668 tCO2e / MWh of electricity sold to the grid (displacement of fossil fuels);

Emission Reductions: 806,000 tCO2e up to 2012 (i.e. US$ 4.03 million).
Deal Structure

Typically CER payments are made directly to the Project Sponsor
Impact of Carbon Finance in the Project’s Debt Service

Year
US$ (’000)
Loan amortization
Loan disbursement
CERs

CF Impact in Annual Debt Service, including interest (%)

CER payments are used to pay back the loan

33.3 % 19.4 % 41.4 % 44.5 % 48.0 % 52.1 % 57.0 %
Impact of Carbon Revenue

• Slightly increase in cashflow IRR
 • From 15.61% to 16.33% (0.72% increase in IRR)
• Financial engineering
 • ERPA cash flow helped project to comply with lender’s covenant of project’s minimum off take agreements to secure debt service
 • Payments for the CERs to the lender eliminate convertibility and transfer risks (1% reduction in loan’s interest rate due to ERPA)

Result: Value added CER revenues + Financial engineering allowed project bankability and financial closure

Construction began immediately after financial closure