

SALKHIT WIND FARM PROJECT

Clean Energy

CDM Experience: SALKHIT Wind Farm Project

A. Bayarmaa

Carbon Finance Specialist, Clean Energy LLC, NEWCOM GROUP

Head, Environmental Working Group, Business Council of Mongolia (BCM)

Background of the project and company

CDM Experience of Salkhit wind farm project

- PDD Development & Revision:
 - Emission Factor Calculation and Data Gathering
- Validation and Registration
 - Providing the evidence
- Emission Reduction Purchase Agreement (ERPA) and CER Sales Strategy

Opportunities and Barriers for future projects in Mongolia

Current carbon market condition and future trend?

ABOUT CLEAN ENERGY LLC

- A renewable energy company developing the *Salkhit Wind Farm Project*, the first wind farm in Mongolia
- Clean Energy LLC was established in 2004 as part of Newcom Group
- Investors:
 - Newcom LLC
 - General Electric Pacific Pte Ltd
 - European Bank for Reconstruction and Development (EBRD)
 - Dutch Development Bank (FMO)

ABOUT THE WIND FARM

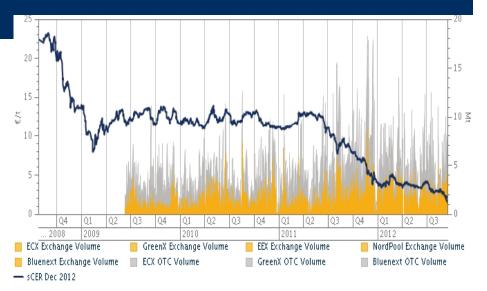
ENVIRONMENT

Salkhit wind farm will annually:

- Avoid emission of 178,778 tons of CO2
- Save 122,000 tons of coal
- Save 1.6 million tons of water
- Supply 100,000 households with renewable energy resources

Follows best international practice on environmental & social management + health & safety of:

- EBRD, IFC Performance Standards
- Equator Principles
- Plans for ISO 14001 (E), 9001 (Quality) & OHS
 - AS18001



CLEAN DEVELOPMENT MECHANISM

Capacity	49.6 MW wind project
Annual electricity generation	168.5 GWh
Expected annual emission reduction	178,778 tCO2e
Crediting period	21 years
Total project investment	US\$ 120 million

Project name CERs/t Туре (per year) Energy A retrofit program for de-centralized distributio 12,000 heating stations in Mongolia n 29,000 **Durgun Hydropower Project** Hydro Taishir Hydropower Project Hydro 30,000 Salkhit Wind Park Project Wind 178,778

Source: Point Carbon sCER OTC price assessment (as of Sep 2012).

CER sales price	CDM annual	Total CDM	
examples	return	Return (gross)	
€20 fixed	€3.5 mln/y	€75 mln	
€1 fixed	€178, 778	€3.7 mln	
~ 90 % floating price of sCER market price			
CER closing price of 27 Oct 2013 – 0.30 € (spot)			

Penalty of non-compliance in the EU ETS is €100 (was €40 in Phase I) So entities can buy emission reductions or allowances either from Joint Implementation or CDM

SALKHIT Vird Farm Project

CDM & PROJECT CYCLE

CDM Cycle:	Timeline
CRM contract	2007
 Project Design Document (PDD) 	2007; 2011
Validation	2007; 2011
LoA from DNA	2007; 2011
Registration	Mar – May 2012
 Developing CER Sale Strategy 	Q2 2012 & beyond
Finding a Buyer	2012
Signing ERPA	Q2 2012-Q1 2013
Monitoring	From June 2013
 Verification/ Certification 	From June 2014
CER Issuance/Forwarding	2015
 Renewing Crediting Period 	2019

Environment	Time	By		
EIA	2006	MEGD		
ESIA	2008	Black & Veatch		
Detailed EIA	2012	Sunny Trade		
Technical parts				
Wind measuremen	nt S	Since 2004		
Land lease	(Since 2004		
Feasibility	7	2007-2011		
Permits & license		Since 2007		
PPA		2007,2010		
Financial Close	(2012		
Equipment contract	et 2	2011		
FINIO Finance for Developm	nent	Vewcon Grou		

Key factors of PDD:

Emission Factor Calculation (ex-post vs. ex-ante):

- Carbon content of lignite

(int'l default value vs. local estimates)

- NCV (net calorific value) or heat content of coal
- Baseline Emission (data gathering, evidence to sources used)
- > Monitoring (clear roles and responsibilities, file records)
- Develop PDD not only following PDD guidelines, but also validation guidelines (VVM – validation & verification manual etc).
- ➢ Be as clear & specific
- ➢ Keep records/evidence of all data used
- Track all guidelines & requirements of the methodology & tool

Project needs to be in advanced stage to complete validation:

DOE required:

- evidence that the project will be implemented (financial close or EPC contract):
 - a. complete details on the technology to be adopted (its origin and environmental soundness, purchase order/contract)
 - b. justification for the wind turbine generation (net electricity generation, capacity factor)
- proof of the starting date of the project activity
- proof of all sources and data used (cross-reference) to justify CER/EF calculation

- CER Price Forecast: Supply & Demand Analysis
- Sales timing, amount
- Contract options: forward, upfront, combination, spot, auction
- CER Price Structure: Fixed, Floating (with cap&floor), combination
- Choosing the market: compliance vs voluntary market
- Buyer: government, fund, private utility, broker
- Single Buyer or many Buyers: Long-term ERPA or short term
- Tender: closed, open or bilateral communication

Emission Reduction Purchase Agreement

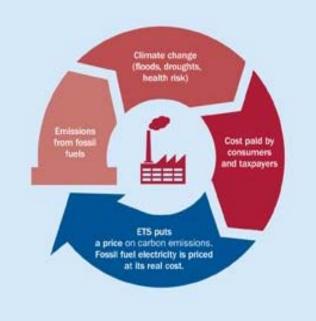
- Condition Precedent: Add buyer as Project Participant?
- Obligation to deliver CERs/sell and buy?
- Conditions and terms of Delivery Shortfall
- Verification/Certification and Project Operation
- Representations, Warranties and Undertakings
- Event of Deafult and Remedies
- Termination
- Misselanneous
- Governing Law and Dispute Resolution



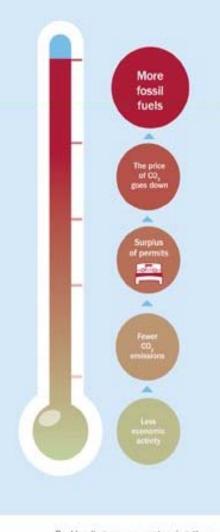
- CER price reduced below 1 Euro (~30 cent €)
- Low CER demand vs. oversupply

Global CER Supply & Demand up to 2020 (June 2012)

Source: Point Carbon



The patient - the ETS


Emissions from fossil fuel power plants and heavy industry cause climate change. The Emissions Trading System (ETS) puts a price on carbon emissions and prices fossil fuel electricity at its real cost.

How does the ETS work? The cap sets a limit on the total amount of carbon that can be emitted by the power and industrial plants in the system; the cap goes down over time. Permits are received for free or auctioned. Why backloading?

Companies can trade permits to emit carbon with one another. If a company reduces its emissions, it can keep the spare permits to cover its future needs or sell them to another company. The illness - surplus permits

The economic crisis has undermined the ETS by bringing about a surplus of emissions permits. How?

The treatment - backloading

A short-term lowering of the supply of permits is needed to save the carbon market.

Backloading means postponing the auctioning of 900 million permits out of the 2,000 million surplus. Fewer permits being available should push the carbon price back up. Alongside a binding renewables targets, a higher carbon price can help push investments in renewable sectors like wind energy that are creating jobs (248,000 EU jobs in 2011).

System.

EWEA

Backloading is a push for both climate action and economic growth.

www.ewea.org

9 ETS in force: EU, Australia, California, Kazakhstan, NZ, Quebec, Swiss, Tokyo, US:RGGI
 8 ETS implementation scheduled: China (7 cities), South Korea
 12 ETS under consideration: Brazil, British Columbia, Chile, China, Japan, Mexico, WCI, Ukraine, Turk

ETS implementation scheduled

ETS under consideration

Asia-Pacific Carbon Market: Australia, China, NZ, South Korea

www.icapcarbonaction.com

Regional Distribution of CDM Projects

COMMaps

FINO Finance for Development

Future Challenges & Opportunities

Challenges:

- Low CER Demand
- Low CER Price
- Project Potential for Large Scale CDM
- Lack of capacity
- Dependence on consultants

Opportunities:

- NAMA
- NMM
- Regional and new ETS
- Capacity Building
- Technical Assistance
- GHG Inventory
- Emission Factor Calucaltion

THANK YOU

A. Bayarmaa Carbon Finance Specialist CLEAN ENERGY LLC Phone: 976-70111331 E-mail: bayarmaa@cleanenergy.mn Web: www.cleanenergy.mn www.newcom.mn

> 3rd floor City Plaza, Seoul Street 6A, Ulaanbaatar, Mongolia

