

Effective Utilization of Fly-Ash from Power Plant for Cement Production

YOSHIYUKI UENOYAMA

General Manager Green-Innovation Business Promotion Department TAIHEIYO CEMENT CORPORATION yosiyuki_uenoyama@taiheiyo-cement.co.jp

太平洋セメント株式会社

Taiheiyo Cement's activities span the world

2

Contents

Outline of dry process of cement production and energy efficiency

Recycling - utilization of by-products and industrial waste including coal fly ash

Taiheiyo's advanced technology for utilizing MSW incineration ash

Raw material for cement

Cement is made from Limestone, Silica, Clay and Iron slag

Clay (dried)

Silica

Long distance belt conveyer

Limestone

Iron slag

Limestone:

Occupying 70-80% of total raw materials and transported from a mine by a belt conveyer, for instance

Iron slag:

By-product of iron manufacturing

The composition of raw material effects property of cement

2013 © TAIHEIYO CEMENT

5

Burning process

Excellent cement can be manufactured by burning at very high temperature of 1450 °C

- 1. Raw material is heated gradually by hot gas in the preheater
- 2. Preheated raw material is burned in the rotary kiln at a temperature of 1450 °C
- 3. Approximately 30 min of burning, the raw material turns red-hot lava like lumps

Preheater (back) of 65m in height and Rotary kiln (fore) of 5.4m in diameter, 95m in length, 3200 ton/day production capacity, 250 kW powered

Inside view of Rotary kiln operating at a very high temperature of 1450 °C

Finishing process

Grinding clinker with gypsum into fine powder, that is cement

Clinker

Gypsum

To control setting time of cement

Finish mill Power required: 3875 kW Milling capacity: 120 ton/h Size: 4.6m dia. and 13.1m

Cement 7 2013 © TAIHEIYO CEMENT

Difference of wet-process kiln in energy efficiency

Providing slurred raw material directly into rotary kiln

Specific required heat and production on various types of kiln

8

Specific required energy and energy efficiency

Transition of unit heat energy

- Typical technology on power efficiency
- Vertical type mill
- Pre-grinding system
- High efficiency classifier
- High efficiency blower fan

Typical technology on heat efficiency

- NSP type burning system
- Five-cyclone cascaded preheater
- Air beam type clinker cooler
- Pulverizing coal constant feeder
- Automated quality monitoring

The top runner on energy efficiency

Comparison of Energy consumption index on clinker and cement manufacturing

Reference :The International Energy Agency (IEA), Worldwide Trends in Energy Use and Efficiency 2008

Business scheme of material recycling

Practically performed "Waste to Resources" business scheme on cement plants

Utilizing by-products and waste

Why by-products and waste can be utilized at cement plants?

Because:

- 1. Cement majorly contains CaO, SiO_2 , AI_2O_3 and Fe_2O_3 . Waste containing such components may be used as raw material.
- 2. Combustible waste may be used as fuel for burning process in the rotary kiln.
- 3. No secondary waste is generated because cinders of combustible waste will be consumed as raw material.
- 4. Hazardous materials such as dioxin can be decomposed in the rotary kiln under the high temperature of 1450 °C.

Chemical compositions of waste

The reason why by-products and waste can be utilized at cement plants

		Composition of major elements (%)				
		SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	Total Alkali Na ₂ O eq.
Ordinary Portland Cement		20~23	3.8~5.8	2.5~3.6	63~65	0.3~0.7
Major natural resources	Limestone	~4	~2	~2	47~55	~0.2
	Clay	45~80	10~30	3~10	~5	2~6
	Silica	70~95	2~10	~5	~2	0.5~3
By- products and waste	Coal fly ash	40~65	10~30	3~10	5~20	0.5~20
	Blast Furnace slag	20~45	10~20	~5	30~60	0.1~0.5
	Sewage sludge	20~50	20~50	5~15	5~30	1~5
	Casting sand	50~80	5~15	5~15	~5	1~5

Clark numbers: O=49.5 Si=25.8 Al=7.56 Fe=4.70 Ca=3.39

Fly- and Bottom-ash recycling on cement production

Cement industry as an MVP of recycling

Approximate 26 million tons of industrial waste including 6 million tons of coal fly ash was recycled in cement industry in 2009

Utilizing by-products and waste

Organic waste is potentially used as fuel

Waste tires

Wood chips and other biomass

Waste plastics

Recycled oil

Key technology of bypass system

Enables to utilize respectively inorganic waste as raw material and organic waste as fuel, and to recover minor elements

Waste to Resources on MSW management

AK(Applied Kiln) System

Saitama Plant, TCC

Ash processing systems

Eco-cement plant

One third of MSW in Tokyo has been recycled as Eco-cement since 2006. Tokyo Metropolitan Government has constructed the plant in their landfill site and operation has been commissioned to TCCs subsidiary.

430t/d

- Input MSW (as incineration ash) 300t/d
- Output Eco-cement

Conclusion

- 1. Coal fly ash generated at thermal power plants can be recycled as alternative clay raw material in large quantities and continuously.
- 2. The cement manufacturing process with advanced quality and process controls enables to recycle by-products and waste generated by other industries as alterative raw material and fuel.
- 3. By means of installing Chloride bypass technology, the cement plant can recycle municipal solid waste (MSW) and its incinerated ash as raw material.
- 4. Taiheiyo Cement has accumulated advanced technologies and experiences related environment as mentioned above and energy efficiency as well, and intends to consult with possible customers and to provide such technologies.

Thank you for your attention.

Баярлалаа ! Thank you for your attention

Locations of Domestic Plants

2013 © TAIHEIYO CEMENT

24

Recycling systems clustered on cement industry

Reducing CO₂ Emission by utilizing waste as fuel

Reference: CEMBUREAU, Alternative Fuels in Cement Manufacture, 1997 http://www.cembureau.be/Documents/Publications/ Alternative_Fuels_in_Cement_Manufacture_CEMBUREAU_Brochure_EN.pdf

Utilizing by-products and waste

Transition of ratio of waste derived fuel

Reference: Japan Cement Association

Technical configuration of AK System

28

Fly ash processing system

Advantages of Eco-cement

✓ More ash can be recycled

Approximately 50% or more of incineration ash and less natural limestone can be used as raw material.

✓ Standards provide easy use of Eco-cement

Eco-cement is regulated in JIS (Japanese Industrial Standards), and can be used easily for practical purposes.

✓ Heavy metals can be recovered

Some of heavy metals, such as Cu, Pb and Zn can be recovered from collected dust.