Workshop on Environmentally Friendly Technologies and Measures in the Energy Industry: potential for NAMAs

> 24<sup>th</sup> January 2013 Chinggis khaan Hotel, Ulaanbaatar, Mongolia

"Results of TNA for GHG mitigation in Mongolia and introduction to draft technology action plan"

Dr.Jargal Dorjpurev, EEC Co., Ltd, Consultant, CCCO, MNEGD

# Contents

- Technology needs assessment (technology selection)
- Barrier analysis for selected technologies
- Draft Technology Action plan for selected technologies

#### TNA - Technology selection

#### Energy Industry: existing technology

|  | Service               | Category            | Technology                                                      | Brief descriptions                                                                                                      |
|--|-----------------------|---------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|  | Electricity<br>supply | Eccoil fuel         | Combined heat and power, large scale                            | There are 7 Combined Heat and Power plants (CHP) in Mongolia. They produce the majority of electricity and heat energy. |
|  |                       | FUSSIFILIEI         | Diesel for electricity generation                               | The province centers which are not connected<br>to the central grid have diesel generators for<br>electricity supply.   |
|  |                       |                     | Small-scale hydropower plant                                    | There are currently 13 hydro plants operating with capacities ranging from 150 kW to 12.0 MW.                           |
|  |                       | Renewable<br>energy | Small-scale solar PV                                            | Most herders have independent solar PV systems to generate electricity for using lights, radios and TVs                 |
|  |                       |                     | Solar and wind hybrid technologies                              | Recently, wind power stations as well as combined Solar-Wind stations were built in some soum centers.                  |
|  | Heat supply           | Fossil fuel         | Combined heat and power, large scale                            | There are 7 Combined Heat and Power plants (CHP) in Mongolia. They produce the majority of electricity and heat energy. |
|  |                       | 1 03311001          | Heating stations for<br>space heating and<br>domestic hot water | Heating stations are used in province centers.                                                                          |
|  |                       |                     |                                                                 |                                                                                                                         |

|     | Service     | Category    | Technology                                                                |  |  |
|-----|-------------|-------------|---------------------------------------------------------------------------|--|--|
|     |             |             | Large-scale dam-based hydro for electricity supply (more than 100MW)      |  |  |
|     |             |             | Large-scale run-of-river hydro for electricity supply (15-75MW)           |  |  |
|     |             |             | Medium-sized dam-based hydro for electricity supply (10-100 MW)           |  |  |
|     |             |             | Small-scale hydropower plant (up to 10 MW), including mini hydro (100     |  |  |
|     |             | Ponowable   | kW – 1 MW) and micro hydro (5-100 kW)                                     |  |  |
|     |             |             | Pumped storage hydroelectricity                                           |  |  |
|     |             | chergy      | Wind turbines: on-shore, large scale                                      |  |  |
|     |             |             | Solar PV(off grid, grid connected, solar home system)                     |  |  |
|     |             |             | Solar thermal-CSP, central receiver tower, parabolic trough collector and |  |  |
|     | Electricity |             | dish                                                                      |  |  |
|     | supply      |             | Biomass combustion and co-firing for electricity and heat                 |  |  |
|     | Supply      |             | Combined heat and power; large-scale                                      |  |  |
| T E |             |             | Combined heat and power; small-scale                                      |  |  |
|     |             | Fossil fuel | Coalmine/coalbed methane recovery                                         |  |  |
|     |             | 1 03311001  | Carbon capture and storage                                                |  |  |
|     |             |             | Integrated gasification, combined-cycle                                   |  |  |
|     |             |             | Pulverized coal combustion with higher efficiency                         |  |  |
|     |             |             | Fuel cell for stationary applications                                     |  |  |
|     |             | Other       | Hydrogen technologies                                                     |  |  |
|     |             | Other       | Downdraft energy tower                                                    |  |  |
|     |             |             | Methane capture at landfills for electricity and heat                     |  |  |
|     |             |             | Combined heat and power; large-scale                                      |  |  |
|     |             | Fossil fuel | Combined heat and power; small-scale                                      |  |  |
|     |             |             | Heat only boilers for space heating and domestic hot water supply         |  |  |
|     |             |             | Coal mine/coal bed methane recovery                                       |  |  |
|     | Heat        | 1           | Biomass combustion for electricity and heat                               |  |  |
|     | supply      | Renewable   | Solar heating technologies                                                |  |  |
|     | Cappiy      |             | Heat pump for space heating and water heating                             |  |  |
|     |             |             | Fuel cell for stationary applications                                     |  |  |
|     |             | Other       | Hydrogen technologies                                                     |  |  |
|     |             | C dioi      | Methane capture at landfills for electricity and heat                     |  |  |
|     |             |             | Combustion of municipal solid waste for district heating                  |  |  |

| Energy<br>Service                                                            | Category     | Technology                                                                                                                       |  |  |
|------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                              |              | Large scale dam-based hydro for electricity supply (more than 100MW)                                                             |  |  |
|                                                                              |              | Medium-sized dam-based hydro for electricity supply (10-100 MW)                                                                  |  |  |
|                                                                              | Renewable    | Pumped storage hydroelectricity                                                                                                  |  |  |
|                                                                              | energy       | Wind turbines: on-shore, large scale                                                                                             |  |  |
| Electricity                                                                  | 5 5 57       | Solar PV (off grid, grid connected, solar home system)<br>Solar thermal –CSP, central receiver tower, parabolic trough collector |  |  |
| supply                                                                       |              |                                                                                                                                  |  |  |
|                                                                              |              | and dish                                                                                                                         |  |  |
|                                                                              |              | Carbon capture and storage                                                                                                       |  |  |
|                                                                              | Fossil fuels | Integrated coal gasification combined cycle                                                                                      |  |  |
|                                                                              |              | Pulverized Coal Combustion with higher efficiency                                                                                |  |  |
| Heat supply Fossil fuel Heat only boilers for space heating and domestic hot |              | Heat only boilers for space heating and domestic hot water                                                                       |  |  |

The major coal based technologies that are available today:

- conventional pulverized coal combustion (PC)
- circulating fluidized bed combustion (CFB)
- supercritical (SC) and ultra-supercritical (USC) PC combustion, and
- integrated gasification combined cycle (IGCC)
- carbon capture and storage (CCS) technologies. CSS technologies have not yet been commercialized.

| Costs                                                    |                                                                                                                                                                                 |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Capital Costs (Construction of power/heat supply plants) | These should include both public and private capital costs.                                                                                                                     |  |  |
| O & M Costs (plus fuel costs)                            | These include costs incurred to maintain power/heating plants and fuel costs.                                                                                                   |  |  |
| Cost effectiveness of mitigation                         | The technologies being selected are for mitigation therefore it is important to look at the cost effectiveness of the technology in terms of USD per unit of $CO_2$ mitigation. |  |  |
| Benefits                                                 |                                                                                                                                                                                 |  |  |
| Environmental Development<br>Priorities                  | Definition                                                                                                                                                                      |  |  |
| Reduced air pollution                                    | Improving air quality by reducing air pollutants such as SOx, NOx, suspended particulate matter, non-methane volatile organic compounds, dust, fly ash and others.              |  |  |
| GHG emission reduction by 2030                           | Reduction in GHG emission through promotion of clean energy and efficient technologies in the energy supply subsector.                                                          |  |  |
| Social Development Priorities                            |                                                                                                                                                                                 |  |  |
| Healthcare improvement                                   | Reduction of health risks such as diseases or improvement of health conditions reducing health damaging air pollutants and indoor smoke.                                        |  |  |
| Economic Development Priorities                          | 5                                                                                                                                                                               |  |  |
| Energy supply improvement                                | Improved access, availability and quality of electricity and heating services.                                                                                                  |  |  |
| Balance of Payments                                      | Reduction in the use of foreign exchange through a reduction of imported oil products and electricity in order to increase national economic independence.                      |  |  |



Using the MCDA approach, the following technologies for the energy subsector were prioritized for future investigation:

- Large hydropower plant;
- Wind turbines; and
- SC and USC coal combustion technologies

#### TNA - Technology selection for residential and commercial sector

| Service                    | Category               | Brief descriptions of existing technologies                                                                                                                                                                                                                                                                                                                                |
|----------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                        | Most consumers use energy inefficient incandescent lamps.                                                                                                                                                                                                                                                                                                                  |
|                            | Lighting               | Very few consumers use energy efficient compact fluorescent lamps (CFL).                                                                                                                                                                                                                                                                                                   |
| Electricity<br>consumption | Electric<br>appliances | Consumers use very different kinds of refrigerators and TVs. There is no control on energy efficiency of electric appliances.                                                                                                                                                                                                                                              |
|                            | Electric<br>motors     | Most motors are of constant speed.                                                                                                                                                                                                                                                                                                                                         |
| Heat<br>consumption        | District<br>heating    | Multi-storey commercial and residential apartment buildings and a<br>small number of private houses are connected to district heating<br>networks for space heating and domestic hot water supply.<br>Insulation of buildings is poor and leaves much room for improvement<br>for reducing energy use for heat consumption in the residential and<br>commercial subsector. |
|                            | Fossil fuel            | Small water heating boilers are used in provincial centers for providing heating for households, schools, hospitals, kindergartens and other public institutions. They are of very low efficiency (40-50%) due to outdated equipment.                                                                                                                                      |
| Fuel consumption           |                        | Individual heat stoves, which burn coal and/or wood to meet residential heating needs, are used in peri-urban areas of cities and in rural areas.                                                                                                                                                                                                                          |
|                            | Renewable              | Some individual consumers, especially in rural areas, use biomass for heating and cooking.                                                                                                                                                                                                                                                                                 |
|                            | energy                 | There are a few cases of experimental use of heat pumps for space heating and water heating of kindergartens.                                                                                                                                                                                                                                                              |

#### TNA - Technology selection for residential and commercial sector

| Service    |             | Category                    | Technology                                             |
|------------|-------------|-----------------------------|--------------------------------------------------------|
|            |             |                             | Building energy management system                      |
|            |             |                             | "Smart" appliances and home automation                 |
|            | Demand-side |                             | Energy efficient refrigerators                         |
| Demand     |             |                             | High efficiency televisions                            |
| manage     | ment for    | Energy saving               | Compact Fluorescent Lighting, LED                      |
| electricit | У           |                             | Variable Speed Motor control                           |
|            |             |                             | Energy storage: Batteries                              |
|            |             |                             | Energy storage: Capacitors                             |
|            |             |                             | Energy storage: Flywheels                              |
|            |             |                             | Ventilation: Air-to air heat recovery, demand control  |
|            |             | Energy saving<br>technology | systems                                                |
| Heating    | and         |                             | Improved building insulation                           |
| cooling    | cooling     |                             | High efficiency heating, venting, and air conditioning |
| Soomig     |             |                             | (HVAC)                                                 |
|            |             |                             | Improved coal fired heating stoves                     |
|            |             |                             | Energy storage technologies                            |
|            |             |                             | Compact Fluorescent Lighting, LED                      |
| Lighting   |             | Energy saving               | Smart controls                                         |
|            |             |                             | Day lighting and building design                       |
|            |             |                             | Solar heating and hybrid systems with hot water        |
|            |             | Renewable and               | Solar cookers                                          |
| Cooking    |             | fuel switch                 | Biogas for cooking                                     |
|            |             |                             | Cook stoves on biomass gasification                    |
|            |             |                             | LPG and LNG for household and commercial cooking       |



TNA - Technology selection for residential and commercial sector

Finally the following two prioritized technologies were selected for the next step investigation:

- Efficient lighting and
- Improved insulation of panel apartment buildings.

### Barrier analysis

|   | Selected technologies                   | Category of the technology | Remarks (classification) |
|---|-----------------------------------------|----------------------------|--------------------------|
| 1 | Large scale hydro power plants          | Non-market                 | Publicly provided goods  |
| 2 | Grid connected wind park                | Non-market                 | Other non-market goods   |
| 3 | Pulverized coal combustion technologies | Non-market                 | Publicly provided goods  |
| 4 | Efficient lighting technology           | Market                     | Consumer goods           |
| 5 | Insulation of panel apartment buildings | Market                     | Consumer goods           |

#### Barrier analysis

- The barriers and measures for all five selected technologies under the two subsectors have been identified as follows:
- The TNA local consultants have prepared the long list of barriers and measures to overcome the barriers on the basis of own experience, existing studies and policy documents and UNEP RISOE Centre Guidebook "Overcoming Barriers to the Transfer and Diffusion of Climate Technologies". The long list consists of barriers, elements of barriers and dimensions of barrier elements (see Annex I).
- The long list economic and financial barriers has been discussed with stakeholders to identify the essential barriers which definitely need to be addressed for technology transfer and diffusion to occur, and the non-essential barriers, which are to be discarded and subsequently ignored.
- All possible barriers were entered in random order in the long list, and each workshop participants was asked to give each barrier a score from 1 to 5, according to how important the barrier is from the participant's own perspective

#### Barrier analysis - HPP and WP

| 1 | Target of e<br>2010      | electricity from renewable sources in total electricity production in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-5 %  |
|---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|   | Share of e<br>productior | electricity production from renewable sources in total electricity in a contract of the sources in total electricity in a contract of the sources in total electricity in the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total electricity is a contract of the sources in total elect | 1.11%  |
|   | From                     | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1%   |
|   | this                     | Wind and Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01%  |
| 3 | Target of 0<br>2020      | electricity from renewable sources in total electricity production in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20-25% |
| 4 | Expected                 | total electricity consumption in 2020 (million kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7800.0 |
| 5 | Expected 2020 targe      | amount of electricity from renewable sources corresponding to<br>et (million kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1560.0 |

According to the government policy Shuren HPP (300 MW, Egiin HPP (220 MW) and Orkhon HPP (100 MW) will be constructed in the level of 2020. The electricity consumption of HPPs will be 1372 million kWh which will be 17.5 % of total electricity consumption.

In order to implement the target of National renewable energy program, Energy regulatory committee gives licenses to 5 private companies for construction of wind parks with total capacity 354.4 MW. The electricity generation of WPs will be 708 million kWh. The share of electricity generation from WPs will be 9.1 %.

### Large scale HPP

|   | Barriers                                             | Average<br>Scores | Rank |
|---|------------------------------------------------------|-------------------|------|
|   | Economic and financial                               |                   |      |
| 1 | Lack of or inadequate access to financial resource   | 2.6               | 4    |
| 2 | High capital cost                                    | 3.3               | 2    |
| 3 | High transaction costs                               | 3.1               | 3    |
| 4 | Inappropriate financial incentives and disincentives | 3.4               | 1    |
| 5 | Uncertain financial environment                      | 2.4               | 5    |
| 6 | Uncertain macro-economic environment                 | 2.2               | 6    |

### Large scale HPP

|    | Barriers                                                   | Average Scores | Rank |
|----|------------------------------------------------------------|----------------|------|
|    | Market failure/ imperfection                               |                |      |
| 1  | Poor market infrastructure                                 | 3.1            | 9    |
| 2  | Low competition                                            | 3.3            | 5    |
| 3  | Restricted access to technology, no experience             | 2.1            | 17   |
|    | Policy, legal and regulatory                               |                |      |
| 4  | Insufficient legal and regulatory framework                | 2.6            | 13   |
| 5  | Inefficient enforcement                                    | 4.0            | 2    |
| 6  | Policy intermittency and uncertainty                       | 3.9            | 3    |
| 7  | Highly controlled energy sector                            | 3.3            | 6    |
|    | Network failures                                           |                |      |
| 8  | Weak coordination among actors favoring the new technology | 3.5            | 4    |
| 9  | Incumbent networks are favored by legislation              | 4.6            | 1    |
|    | Institutional and organizational capacity                  |                |      |
| 10 | Lack of professional institutions                          | 3.1            | 7    |
|    | Human skills                                               |                |      |
| 11 | Inadequate training facilities                             | 2.8            | 10   |
| 12 | Inadequate personnel for projects designing                | 2.7            | 12   |
|    | Social, cultural and behavioral                            |                |      |
| 13 | Traditions and habits                                      | 2.5            | 15   |
|    | Information and awareness                                  |                |      |
| 14 | Lack of confidence in new climate technologies             | 3.1            | 8    |
|    | Technical                                                  |                |      |
| 15 | Technology not familiar in Mongolia                        | 2.0            | 18   |
| 16 | Poor O&M facilities                                        | 2.3            | 16   |
| 17 | System constraints                                         | 2.6            | 14   |
|    | Other                                                      |                |      |
| 18 | Environmental impacts                                      | 2.7            | 11   |

#### Common barriers for HPP, WP and TPP

#### Common barriers regarding the policy, legal and regulatory aspects are

- lack of long-term political commitment and uncertain government policies (political risks for investors);
- lack of government control for implementation of laws and regulations;
- government or utility monopoly of energy sector.

#### Common barriers regarding the market and network aspects are

- underdeveloped competition,
- insufficient coordination between relevant ministries and other stakeholders.

#### Regarding the large scale HPP technology, policy-related barriers have first priorities.

- The stakeholders participated in the barrier analysis gave the highest score 4.75 (from maximum 5) to the barriers "Lack of long-term political commitment" followed by barriers "Officials make decisions on their own will", "Uncertain government policies (political risks for investors)", and "Insufficient willingness or ability to enforce laws and regulations"
- Decision makers and all the experts in the energy sector understand the need for developing large scale hydro power plants in the current energy system of Mongolia. However, these kinds of projects are not moving forward and materialized due to political reasons and special interests. The plans on building large scale hydro power plants are reflected in every policy documents of energy sector. The decision on the required investment had been made and projects had been discussed few times in parliament and cabinet meetings. Even so, it still didn't move forward due to political reasons. For HPPs, politics is the main barrier.

#### Specific barriers for HPP, WP

- Regarding the wind park the highest priority is a system constraints or Capacity limitation with grid system.
- Wind parks affect the energy system stability as it operates in an uncontrolled manner when there is wind. Especially for countries like Mongolia where energy system consists of small sized coal fired power plants, connecting many high capacity wind power plants will destabilize the system.
- On the other hand, there are many companies who are interested in developing wind parks because the renewable energy law has explicitly stated the feed in tariff to be provided for electricity supplied by wind. As of 2012, there are 5 companies who obtained special license to construct wind parks and the planned installed capacity of all these wind parks are 500 MW.
- The main difficulties encountering implementation of large Hydro power plant projects is low electricity tariff. Even though in the renewable energy law, it is mentioned that feed in tariff to be provided for electricity supplied by renewable energy resources, the electricity generated by HPPs with capacity more than 5MW is not covered under this feed in tariff. This low tariff hinders investment in hydro power plant project as the power purchase agreement doesn't reflect feed in tariff mentioned in the renewable energy law.

#### **Problem tree and causal relation for the HPP**



#### Translated problem to solutions for the HPP



#### Barrier analysis

#### Identification of barriers for efficient lighting technology

|   | Barriers                                       | Average<br>Scores | Rank |
|---|------------------------------------------------|-------------------|------|
|   | Economic and financial                         |                   |      |
| 1 | Lack of adequate access to financial resources | 2.6               | 3    |
| 2 | High cost of capital                           | 3.4               | 2    |
| 3 | Inappropriate financial incentives             | 3.0               | 1    |
| 4 | Uncertain macro-economic environment           | 2.4               | 4    |

|   | Barriers                                     | Average<br>Scores | Rank |
|---|----------------------------------------------|-------------------|------|
|   | Market failure                               |                   |      |
| 1 | Poor market infrastructure                   | 2.8               | 6    |
| 2 | Underdeveloped competition                   | 3.1               | 5    |
| 3 | Market size                                  | 2.6               | 7    |
|   | Policy, legal and regulatory                 |                   |      |
| 4 | Insufficient legal and regulatory framework  | 4.3               | 1    |
|   | Institutional and organizational capacity    |                   |      |
| 5 | Lack of specialized ESCOs                    | 3.4               | 4    |
|   | Human skills                                 |                   |      |
| 6 | Inadequate personnel for preparing projects  | 2.3               | 8    |
|   | Information and awareness                    |                   |      |
| 7 | Lack of awareness about climate technologies | 3.8               | 2    |
|   | Technical                                    |                   |      |
| 8 | Product not reliable                         | 3.7               | 3    |

#### TNA – Barrier analysis Market mapping for efficient lighting technology



## Identification of barriers for the technology - Improved insulation of panel apartment buildings

|   | Barriers                                       | Average<br>Scores | Rank |
|---|------------------------------------------------|-------------------|------|
|   | Economic and financial                         |                   |      |
| 1 | Lack of adequate access to financial resources | 3.8               | 2    |
| 2 | High cost of capital                           | 3.7               | 3    |
| 3 | Inappropriate financial incentives             | 4                 | 1    |
| 4 | Uncertain macro-economic environment           | 2.6               | 4    |

|   | Barriers                                    |     | Rank |  |
|---|---------------------------------------------|-----|------|--|
|   | Market failure                              |     |      |  |
| 1 | Poor market infrastructure                  | 3.8 | 1    |  |
| 2 | Underdeveloped competition                  | 3.6 | 3    |  |
| 3 | Market size                                 | 2.7 | 7    |  |
|   | Policy, legal and regulatory                |     |      |  |
| 4 | Insufficient legal and regulatory framework | 3.6 | 2    |  |
|   | Institutional and organizational capacity   |     |      |  |
| 5 | Lack of professional institutions           | 3.5 | 4    |  |
|   | Human skills                                |     |      |  |
| 6 | Inadequate personnel for preparing projects | 2.6 | 8    |  |
|   | Information and awareness                   |     |      |  |
| 7 | Lack of awareness about the technology      | 3.5 | 5    |  |
|   | Technical                                   |     |      |  |
| 8 | Quality of technology                       | 3.2 | 6    |  |

## Market mapping for Improved insulation of panel apartment buildings



#### **Problem tree and causal relation for Improved insulation of panel** *apartment buildings*



## Translated problem to solutions for Improved insulation of panel apartment buildings



#### Common barriers for Improved insulation of panel apartment buildings

Barriers faced by efficient lighting and building insulation technologies in the residential and commercial sector appear to be quite similar.

- The common economic and financial barriers are inappropriate financial incentives, lack of adequate access to financial resources and uncertain macro-economic environment.
- Common barriers regarding the policy, legal and regulatory aspects are mismanaged energy sector; lack of laws and regulations on energy efficiency.
- Common barriers regarding the market and network aspects are insufficient coordination between relevant ministries and other stakeholders, lack of professional institutions; and lack of confidence in new climate technologies

The priorities of barriers are different for the two specific technologies.

- For the efficient lighting technology, the most important barriers are low electricity tariff and lack of management for implementation of the technology
- For the building insulation technology, the barriers of highest priority are high cost of capital and law constant tariff not depending on actual heat consumption.



| Measures               | Actions                                                                                                                 | Why need to take these actions?                                                                                                                                                                                                                                                                                    | Responsible<br>organization                                                                                                                           | Time<br>frame | Expected<br>budget,<br>1000USD | How<br>can be<br>fund |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------|-----------------------|
| Policy, legal          | and regulatory                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |               |                                |                       |
| Long term<br>political | Development and<br>approval of long-term<br>program for the<br>development of<br>energy sector of<br>Mongolia           | In the nearest future,<br>electricity demand increases.<br>To cover he needs of 85<br>percent of this demand<br>electricity, it is necessary to<br>build large scale TTP near<br>local coal deposits. This<br>should be included in the<br>program<br>Currently, a master plan for<br>energy sector development of | Ministry of<br>Environment<br>and Green<br>Development;<br>Ministry of<br>Energy;<br>Ministry of<br>Economic<br>Development<br>Ministry of<br>Energy; | 1 year        | 150.0                          | State<br>budget       |
| commitment             | For the energy<br>sector is necessary                                                                                   | Mongolia is the major policy<br>document. Some revisions is<br>essential<br>These provisions are<br>embedded in the national                                                                                                                                                                                       | Ministry of<br>Economic<br>Development<br>Ministry of                                                                                                 | 0.5 year      | 100.0                          | budget                |
|                        | to develop a special<br>program for the<br>introduction of new<br>technology and more<br>efficient energy<br>production | and document the<br>development of green<br>economy within the country.<br>Therefore, they should be<br>used                                                                                                                                                                                                       | Environment<br>and Green<br>Development;<br>Ministry of<br>Energy;                                                                                    | 1 year        | 120.0                          | State<br>budget       |

| 11 | Economic and financial measures                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |        |            |   |
|----|-----------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|------------|---|
|    | improve the<br>financial capacity<br>of the country | Create a financial fund<br>for capital building<br>area of major strategic<br>targets | The country's export has been increased with<br>intensive development of the mining sector in<br>last few years. At the same time, the political<br>parties distribute cash to the population so they<br>can fulfill election campaign promises. This cash<br>distribution activity shall be stopped and instead<br>a fund to develop the country shall be<br>established to allocate such fund. | Government,<br>Parliament                                         | 1 year | No<br>need | - |
|    |                                                     | Obtaining of a loan or bond                                                           | In near future, over USD 1.8 billion will be<br>required to construct large-scale, high-efficiency<br>TPPs. In order to raise the capital, attracting<br>foreign investment or applying for international<br>soft loans are essential for implementing the<br>TPP projects.                                                                                                                      | Ministry of<br>Economic<br>Development;<br>Ministry of<br>Finance | 1 year | No<br>need | - |

| Market                                                                                                                                         |                                                                        |                                                                                                                                                                                                 |                                                                             |             |            |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|------------|-----------------|
| Create and develop<br>a system that<br>increases the<br>responsibility of<br>employees to<br>improve the<br>efficiency of energy<br>production | development<br>and adoption<br>the law on<br>energy saving             | establish a working group to<br>develop the law of energy<br>conservation                                                                                                                       | Energy Regulatory<br>Committee of<br>Mongolia                               | 1.5<br>year | 100.0      | State<br>budget |
| Create a market<br>price system for the<br>energy sector                                                                                       | development<br>and approval of<br>guidelines of<br>the energy<br>price | establish a working group to<br>develop guidelines on energy<br>pricing /tariffing system                                                                                                       | Government of<br>Mongolia, Energy<br>Regulatory<br>Committee of<br>Mongolia |             | No<br>need |                 |
| Prepare skilled local<br>experts who could<br>develop project<br>development study<br>including Feasibility<br>Studies                         | training of<br>specialists in<br>developed<br>countries                | Large and modern thermal<br>power stations working on<br>this technology for Mongolia<br>completely new. Therefore,<br>the development of the<br>project should be made<br>highly knowledgeable | Ministry of<br>Education and<br>Science;<br>Ministry of Energy;             | 3<br>year   | 5000.0     | State<br>budget |
| preparation of<br>specialists on<br>thermal power plants<br>operate at super<br>critical pressure of<br>steam                                  | retraining of<br>teachers in<br>developed<br>countries                 | currently prepares an<br>engineer TPP The Institute<br>can graduate engineers for<br>the new technology                                                                                         | Ministry of<br>Education and<br>Science;<br>Ministry of Energy;             | 5<br>year   | 10000.0    | State<br>budget |

| Network                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |        |             |                 |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|-------------|-----------------|
| improving the<br>performance of<br>any real<br>decisions and<br>programs on<br>energy<br>development                          | Establishing the principle of<br>solutions of global<br>importance necessarily<br>based on the<br>recommendation and<br>findings of leading<br>scientists and specialists                                                                                                                                                                                                 | creating energy research<br>institute under the Ministry of<br>Energy. Initiators of this project<br>- the ministries and authorized<br>agents – do not support<br>involvements and requests of<br>scientists, local authorities and<br>community in the decision-<br>making and this results in later<br>on unexpected barriers during<br>the implementation, in some<br>cases even lead to cancelling<br>the project implementation. | Governme<br>nt of<br>Mongolia,<br>Ministry of<br>energy | 1 year | 10000.<br>0 | State<br>budget |
| establishment<br>of the principle<br>of "in the<br>Ministry work<br>only highly<br>qualified<br>employees of<br>the industry" | continuous training of<br>workers. To support<br>employment of<br>experienced engineers and<br>scientists at the Ministry of<br>Energy. To prioritize<br>improvement of their<br>professional skills and<br>sustainable employment<br>with staff development<br>programs and benefits and<br>at the same time to<br>increase responsibility<br>mechanisms to higher level | Administration of the Ministry of<br>Energy is unsustainable; each<br>time after the political elections,<br>non-professional and political<br>activists are appointed to major<br>positions and whom in turn<br>build own team consisted of<br>non-professionals with less<br>experiences. This inappropriate<br>phenomenon is very common.                                                                                           | Governme<br>nt of<br>Mongolia.<br>Parliament            | yearly | 1000.0      | State<br>budget |

# Thank you for attention