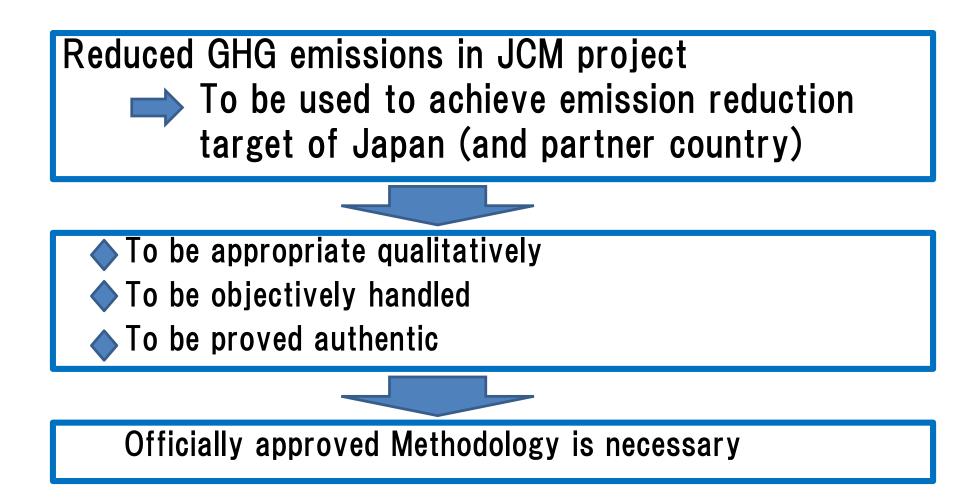


Developing Methodology for the Joint Crediting Mechanism

Wednesday, 24 August 2016 Overseas Environmental Cooperation Center, Japan (OECC) Shigeo Aoki

Confidential

M Measurement/Monitoring

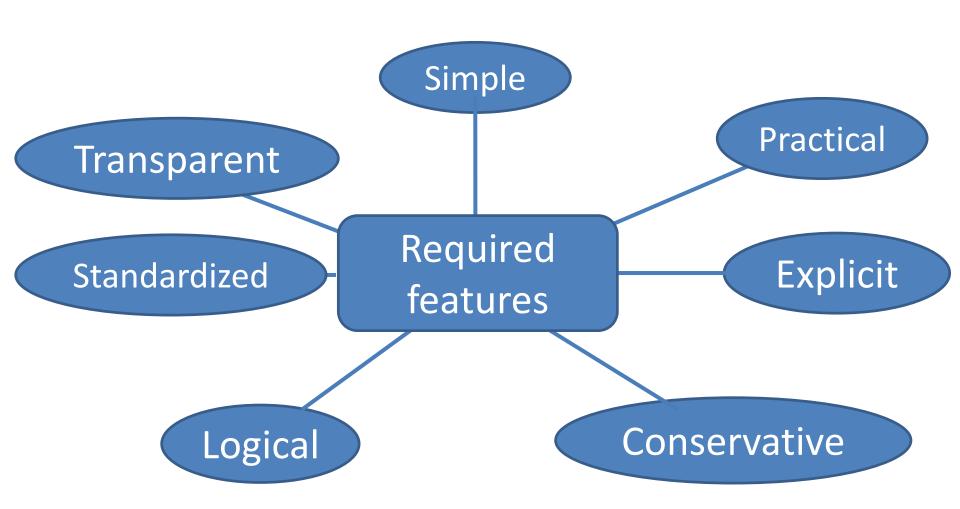

Grasping reduced GHG emissions

R Reporting Reporting GHG reductions with prescribed excel form

Verification

> Verifying Monitoring report by TPE

MRV Methodology in JCM Structure



(Sourced from IGES Presentation)

Project Participant/Joint Committee	Submission of Proposed Methodology
Joint Committee	Approval of Proposed Methodology
Project Participants	PDD development
Third Party Entities (TPE)	Validation
Joint Committee	Registration
Project Participants	Monitoring
Third Party Entities (TPE)	Verification
Joint Committee decides the amount Each Government issues the credit	Credit issuance

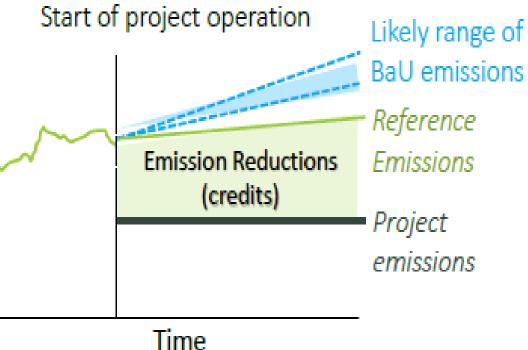
Required features for Methodology

Methodology defines;

- Eligibility criteria
- Calculation of Reference Emissions
- Calculation of Project Emissions
- Calculation of Emission Reductions
- Data & Parameters

Others

Eligibility Criteria : Conditions to be satisfied as a JCM Project

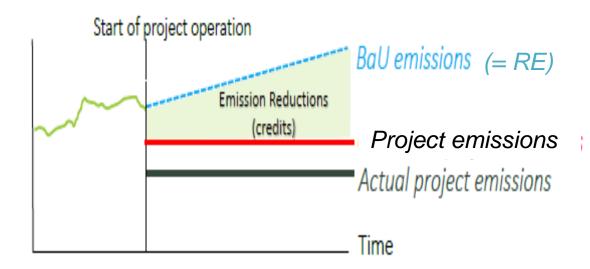

Examples: MN_AM002 for HOB Pj in Mongolia

Category	Example of Eligibility Criteria
Type of Technology	Technology employed : Coal-fired Heat Only Boiler for Hot Water Supply
Objective of project	New HOB installation to replace existing one
Capacity	Capacity of Project HOB ranges between 0.1MW and 1.0MW
Performance level	Catalogue value of new boiler efficiency (η) > 80 %

Calculation of Emission Reductions - (1)

Setting conservative reference emissions:

ER = RE − PE RE < BaU Emissions BaU (Business as Usual) Plausible emissions if JCM Pj would not be implemented Start of project of Emission


OECC

(Partly sourced from IGES Presentation)

Calculation of Emission Reductions - (2)

Setting conservative project emissions:

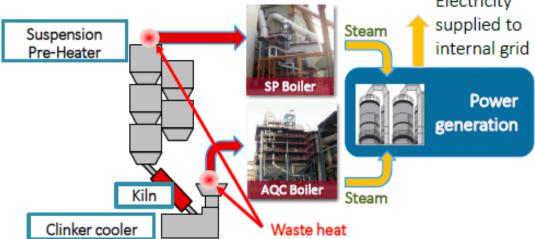
(Partly sourced from IGES Presentation)

Calculation of Reference Emissions - case 1

Example of setting conservative Reference Emissions in case of Replacement of HOB (MN_AM002)

- RE = PH/ NRE, HOB X EFC02, coal < BE
 - RE : Reference missions
 - PH: Net heat quantity by the project HOB [GJ/p]

ПRE,HOB : Boiler efficiency of the reference HOB [-] EFcO2,coal : CO2 emission factor of coal [tCO2/GJ] BE : BAU Emissions


 $BE = PH/ \eta_{BAU,HOB} \times EF_{CO2,coal} \quad \eta_{RE,HOB} > \eta_{BAU,HOB}$

Default Value $\eta_{\text{RE,HOB}} = 0.533$

Calculation of Reference Emissions - case 2

Example of setting conservative Reference Emissions in case of WHR Project (ID_AM001) (Partly sourced from IGES Presentation)

Waste heat recovery (WHR) system to generate electricity in the cement production facility .

• The reference emissions are calculated based on;

The gross amount of electricity generated by the WHR

minus

The electricity consumed for captive use

 The default value for electricity consumed for captive use is set as the maximum rated capacity of equipment of the WHR system assuming their operation is 24h/day, not the actual electricity consumption by the system.

Example of setting conservative Project Emissions in case of Replacement of HOB (MN_AM002)

PE = PH/ NPE, HOB X EFC02, coal + EC X EFC02, grid > PEact

- PE : Project missions, : PE_{act} = Actual PE
- PH: Net heat quantity by the project HOB [GJ/p]

ПРЕ, HOB: Boiler efficiency of the project HOB (=0.61) EFco2, coal: CO2 emission factor of coal [tCO2/GJ] EFco2, grid: CO2 emission factor of grid [tCO2/MWh]

- EC: Electricity consumed by the project HOB
 - $EC = RPC \times HMP$
 - RPC = Rated Power Consumption
 - HMP = Operation hours of the project HOB
 - Default Value $\eta_{\text{PE,HOB}} = 0.61 < \eta_{\text{PE,HOB, act}}$

Average monitoring parameters in 23 JCM Approved Methodologies : 2

Example 1: Replacement HOB for Hot Water Supply (MN_AM002)

- Net heat quantity
- HOB Operation hours

Example 2: WHR System for Cement production (ID_AM001)

- Electricity generated by the project
- Operation days

Monitoring Methodology

Monitoring Spreadsheet: JCM_MN_AM002_ver01.0

Sectoral scope: 01

Monitoring Plan Sheet (Calculation Process Sheet) [Attachment to Project Design Document]

1. C	alc	ulatio	ons for emission reductions	Fuel type	Value	Units	Parameter
	Emi	issio	n reductions during the period p	N/A	0	tCO ₂ /p	ERp
2. S	ele	cted	default values, etc.				
	co	2 emi	ission factor of coal	Coal	0.0909	tCO ₂ /GJ	EF _{CO2, coal}
	Boil	ler ef	ficiency of the reference HOB	N/A	0.533	-	NRE,HOB
	Boil	ler ef	ficiency of the project HOB	N/A	0.610	-	ПРЈ,НОВ
3. C	alc	ulatio	ons for reference emissions				
	Ref	eren	ce emissions during the period p	N/A	0	tCO₂/p	REp
		Refe	erence Emissions	N/A	0	tCO ₂ /p	
			Net heat quantity supplied by the project HOB	N/A	0	GJ/p	PHp
			Boiler efficiency of the reference HOB	N/A	0.533	-	NRE, HOB
			CO ₂ emission factor of coal	Coal	0.0909	tCO ₂ /GJ	EF _{CO2,coal}
4. C	alc	ulatio	ons of the project emissions				
	Pro	ject e	emissions during the period p	N/A	0	tCO₂/p	PEp
		Proj	ect emissions (Fossil fuel consumption)	N/A	0	tCO ₂ /p	
		l L	Net heat quantity supplied by the project HOB	N/A	0	GJ/p	PHp
			Boiler efficiency of the project HOB	N/A	0.610	-	ПРЈ,НОВ
			CO ₂ emission factor of coal	Coal	0.0909	tCO ₂ /GJ	EF _{CO2,coal}
		Proj	ect emissions (Electricity consumption)	N/A	0	tCO ₂ /p	
			Electricity consumption of the project HOB	Electricity	0	MWh/p	ECp
		[Total hours of the project HOB operation	N/A	0	h/p	HMPp
			Rated power consumption of the project HOB	N/A	0	kW	RPC _{PJ,HOB}
			CO ₂ emission factor of the grid	Electricity	0.0000	tCO2/MWh	EF _{CO2,grid}

[List of Default Values]

CO ₂ Emission Factor of Coal used in HOBs	EF _{CO2, coal}	unit
Default emission factor applied to Lignite in fuel according to "2006 IPCC Guidelines for National Greenhouse Gas Inventory"	0.0909	tCO₂/GJ

Boiler Efficiency of coal-fired HOB in Mongolia	η	unit
Boiler Efficiency of Reference the HOB	0.533	-
Boiler Efficiency of the Project HOB	0.610	-

Monitoring Methodology

Monitoring Spreadsheet: JCM_MN_AM002_ver01.0

Sectoral scope: 01

Monitoring Plan Sheet (Input Sheet) [Attachment to Project Design Document]

Table 1: Parameters to be monitored ex post

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)
Monitoring point No.	Parameters	Description of data	Estimated Values	Units	Monitoring option	Source of data	Measurement methods and procedures	Monitoring frequency	Other comments
1	РНр	Net heat quantity supplied by the project HOB during the period p.		GJ/p	Option C	Logged data of net heat quantity supplied by the project HOB	Measurement methods which are using a heatmeter meet the industrial standards (host country or international standard). Monitoring data is the amount of heat supplied from the project HOB. This monitoring data is recorded in the data logger that is built into the heat meter. Electric data recorded on the data logger is input to the spreadsheet properly. In these monitoring activities, QA/QC be implemented. - In the case that heatmeter with verification is used, the verification validity for the heatmeter does not expire till the last date of the monitoring period. - If the heatmeter with the verification is not required in the industrial standard, uncertainty of the calibration data of the monitoring equipment meet the following conditions; - It is within accepted level of the verification. - It is within the accuracy level of industry standard requires. Required calibration frequency is the frequency which can be confirmed to be within the accuracy level of the requirement of industrial standard.	Measuring frequency: Continuously Recording frequency: Hourly	Trouble shooting procedure of missing data; Completed by the hourly minimum value (excluding abnormal value) of available recorded data during the monitoring period.
2		Total hours of the project HOB operation during the period <i>p</i>		hours/p	Option C	Identified by monitoring period	Total time from the start time of monitoring to the end time of monitoring		

Table 2: Project-specific parameters to be fixed ex ante

(a)	(b)	(c)	(d)	(e)	(f)
Parameters	Description of data	Estimated Values	Units	Source of data	Other comments
IPPC	Rated power consumption of the project HOB		kW	Catalog value provided by the manufacturer of the project HOB	
	CO ₂ emission factor of the grid electricity consumed by the project HOB		tCO ₂ /MWh	The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from CDM Mongolia unless otherwise instructed by the Joint Committee.	

Table3: Ex-ante estimation of CO2 emission reductions

CO₂ emission reductions Units 0 tCO₂/p

[Monitoring option]

Option A	Based on public data which is measured by entities other than the project participants (Data used: publicly recognized data such as statistical data and specifications)
Option B	Based on the amount of transaction which is measured directly using measuring equipments (Data used: commercial evidence such as invoices)
Option C	Based on the actual measurement using measuring equipments (Data used: measured values)

Reference : JCM Approved Methodologies (1)

No	Meth No	Rev	Title	Country	Tech. Type
1	MN_AM001	1.0	Installation of energy-saving transmission lines in the Mongolian Grid	Mongol	Transmission- Line
2	MN_AM002	1.0	Replacement and Installation of High Efficiency Heat Only Boiler (HOB) for Hot Water Supply Systems	Mongol	Heat Only Boiler
3	ID_AM001	1.0	Power Generation by Waste Heat Recovery in Cement Industry	Indonesia	WHR
4	ID_AM002	2.0	Energy Saving by Introduction of High Efficiency Centrifugal Chiller	Indonesia	Chiller
5	ID_AM003	2.0	Installation of Energy-efficient Refrigerators Using Natural Refrigerant at Food Industry Cold Storage and Frozen Food Processing Plant	Indonesia	Refrigerator

Reference : JCM Approved Methodologies (2)

No	Meth No	Rev	Title	Country	Tech. Type
6	ID_AM004	2.0	Installation of Inverter-Type Air Conditioning System for Cooling for Grocery Store	Indonesia	Air- Conditioner
7	ID_AM005	2.0	Installation of LED Lighting for Grocery Store	Indonesia	LED Lighting
8	ID_AM006	2.0	GHG emission reductions through optimization of refinery plant operation in Indonesia	Indonesia	Distributed Control/Advan -ced Control
9	ID_AM007	1.0	GHG emission reductions through optimization of boiler operation in Indonesia	Indonesia	Utility Optimization Control
10	ID_AM008	1.0	Installation of a separate type fridge- freezer showcase by using natural refrigerant for grocery store to reduce air conditioning load inside the store	Indonesia	Separate type fridge-freezer showcase

Reference : JCM Approved Methodologies (3)

No	Meth No	Rev	Title	Country	Tech. Type
11	ID_AM009	1.0	Replacement of conventional burners with regenerative burners for aluminum holding furnaces	Indonesia	Regenerative Burner
12	ID_AM010	1.0	Introducing double-bundle modular electric heat pumps to a new building	Indonesia	Heat Pump
13	PW_AM001	1.0	Displacement of Grid and Captive Gen-set Electricity by a Small-scale Solar PV System	Palau	Solar PV System
14	VN_AM001	1.0	Transportation energy efficiency activities by installing digital tachograph systems	Vietnam	Digital Tachograph
15	VN_AM002	1.0	Introduction of Room Air Conditioners Equipped with Inverters	Vietnam	Inverter Air- conditioner
16	VN_AM003	1.0	Improving the energy efficiency of commercial buildings by utilization of high efficiency equipment	Vietnam	High efficiency Boiler, Heat Pump

Reference : JCM Approved Methodologies (4)

No	Meth No	Rev	Title	Country	Tech. Type
17	VN_AM004	1.0	Introducing double-bundle modular electric heat pumps to a new building	Vietnam	Heat Pump
18	VN_AM005	1.0	Installation of energy efficient transformers in a power distribution grid	Vietnam	Transformer in power distribution network
19	MV_AM001	1.0	Displacement of Grid and Captive Gen-set Electricity by Solar PV System	Maldives	Solar PV System
20	KE_AM001	1.0	Electrification of communities using Micro hydropower generation	Kenya	Micro hydropower
21	BD_AM001	1.0	Energy Saving by Introduction of High Efficiency Centrifugal Chiller	Bangladesh	Chiller
22	KH_AM001	1.0	Installation of LED street lighting system with wireless network control	Cambodia	LED
23	ET_AM001	1.0	Electrification of communities using Micro hydropower generation	Ethiopia	Micro hydropower

As of end of August, 2016

Reference (Sourced from IGES website)

Websites for further guidance on MRV and the JCM methodologies

Official JCM Webpage:

rules and guidelines for each country, JCM methodology, public inputs announcement, JCM projects

CMI or	1798 B.
	In Larinet photon 204
10-10-10 10-10-10 10-10-10-10 10-10-10-10	New York Control of the Control of the Control of Contr

IGES JCM Database: details of methodologies, project cycle, feasibility studies, duration, statistics, etc.

-	-	-	-	=	and some	-	-	-	
	-	STATISTICS.	-	-	-128-	No. of Concession, or other sectors of the left of the	22.	144	
-	-	trinton Boy	-		100	14	22.	- 44	_
**	-	Martin Professioners	-	-	100.1	78	22,	-	Ē
-	-	President Proprietor Street	-		-	10.00	27.	1000	-
		and rough and	_		100	18-04	22,	1000	-

http://bit.ly/igesjcmdatabase

https://www.jcm.go.jp/

100 Questions & Answers about MRV

online version of a print guidebook titled <u>"One Hundred Questions</u> <u>and Answers about MRV in Developing Countries."</u> for better understanding the existing Measuring, Reporting, and Verification (MRV) schemes for greenhouse gases in developing countries.

http://www.iges.or.jp/en/climate/mrv100/index.html

IGES provides technical support for methodology development, PDD development and preparation of monitoring report.

Thank you!